Logo Search packages:      
Sourcecode: libgnucrypto-java version File versions  Download package

Anubis.java

package gnu.crypto.cipher;

// ----------------------------------------------------------------------------
// $Id: Anubis.java,v 1.9 2003/04/28 10:27:36 raif Exp $
//
// Copyright (C) 2001, 2002, 2003, Free Software Foundation, Inc.
//
// This file is part of GNU Crypto.
//
// GNU Crypto is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// GNU Crypto is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING.  If not, write to the
//
//    Free Software Foundation Inc.,
//    59 Temple Place - Suite 330,
//    Boston, MA 02111-1307
//    USA
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library.  Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
//
// As a special exception, the copyright holders of this library give
// you permission to link this library with independent modules to
// produce an executable, regardless of the license terms of these
// independent modules, and to copy and distribute the resulting
// executable under terms of your choice, provided that you also meet,
// for each linked independent module, the terms and conditions of the
// license of that module.  An independent module is a module which is
// not derived from or based on this library.  If you modify this
// library, you may extend this exception to your version of the
// library, but you are not obligated to do so.  If you do not wish to
// do so, delete this exception statement from your version.
// ----------------------------------------------------------------------------

import gnu.crypto.Registry;
import gnu.crypto.util.Util;

//import java.io.PrintWriter;
import java.security.InvalidKeyException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;

/**
 * <p>Anubis is a 128-bit block cipher that accepts a variable-length key. The
 * cipher is a uniform substitution-permutation network whose inverse only
 * differs from the forward operation in the key schedule. The design of both
 * the round transformation and the key schedule is based upon the Wide Trail
 * strategy and permits a wide variety of implementation trade-offs.</p>
 *
 * <p>References:</p>
 *
 * <ol>
 *    <li><a href="http://planeta.terra.com.br/informatica/paulobarreto/AnubisPage.html">The
 *    ANUBIS Block Cipher</a>.<br>
 *    <a href="mailto:paulo.barreto@terra.com.br">Paulo S.L.M. Barreto</a> and
 *    <a href="mailto:vincent.rijmen@esat.kuleuven.ac.be">Vincent Rijmen</a>.</li>
 * </ol>
 *
 * @version $Revision: 1.9 $
 */
00073 public final class Anubis extends BaseCipher {

   // Debugging methods and variables
   // -------------------------------------------------------------------------

//   private static final String NAME = "anubis";
   private static final boolean DEBUG = false;
   private static final int debuglevel = 9;
//   private static final PrintWriter err = new PrintWriter(System.out, true);
//   private static void debug(String s) {
//      err.println(">>> "+NAME+": "+s);
//   }

   // Constants and variables
   // -------------------------------------------------------------------------

   private static final int DEFAULT_BLOCK_SIZE = 16; // in bytes
   private static final int DEFAULT_KEY_SIZE = 16; // in bytes

   private static final String Sd = // p. 25 [ANUBIS]
      "\uBA54\u2F74\u53D3\uD24D\u50AC\u8DBF\u7052\u9A4C"+
      "\uEAD5\u97D1\u3351\u5BA6\uDE48\uA899\uDB32\uB7FC"+
      "\uE39E\u919B\uE2BB\u416E\uA5CB\u6B95\uA1F3\uB102"+
      "\uCCC4\u1D14\uC363\uDA5D\u5FDC\u7DCD\u7F5A\u6C5C"+
      "\uF726\uFFED\uE89D\u6F8E\u19A0\uF089\u0F07\uAFFB"+
      "\u0815\u0D04\u0164\uDF76\u79DD\u3D16\u3F37\u6D38"+
      "\uB973\uE935\u5571\u7B8C\u7288\uF62A\u3E5E\u2746"+
      "\u0C65\u6861\u03C1\u57D6\uD958\uD866\uD73A\uC83C"+
      "\uFA96\uA798\uECB8\uC7AE\u694B\uABA9\u670A\u47F2"+
      "\uB522\uE5EE\uBE2B\u8112\u831B\u0E23\uF545\u21CE"+
      "\u492C\uF9E6\uB628\u1782\u1A8B\uFE8A\u09C9\u874E"+
      "\uE12E\uE4E0\uEB90\uA41E\u8560\u0025\uF4F1\u940B"+
      "\uE775\uEF34\u31D4\uD086\u7EAD\uFD29\u303B\u9FF8"+
      "\uC613\u0605\uC511\u777C\u7A78\u361C\u3959\u1856"+
      "\uB3B0\u2420\uB292\uA3C0\u4462\u10B4\u8443\u93C2"+
      "\u4ABD\u8F2D\uBC9C\u6A40\uCFA2\u804F\u1FCA\uAA42";

   private static final byte[] S = new byte[256];

   private static final int[] T0 = new int[256];
   private static final int[] T1 = new int[256];
   private static final int[] T2 = new int[256];
   private static final int[] T3 = new int[256];
   private static final int[] T4 = new int[256];
   private static final int[] T5 = new int[256];

   /**
    * Anubis round constants. This is the largest possible considering that we
    * always use R values, R = 8 + N, and 4 &lt;= N &lt;= 10.
    */
00123    private static final int[] rc = new int[18];

   /**
    * KAT vector (from ecb_vk):
    * I=83
    * KEY=000000000000000000002000000000000000000000000000
    * CT=2E66AB15773F3D32FB6C697509460DF4
    */
00131    private static final byte[] KAT_KEY =
         Util.toBytesFromString("000000000000000000002000000000000000000000000000");
   private static final byte[] KAT_CT =
         Util.toBytesFromString("2E66AB15773F3D32FB6C697509460DF4");

   /** caches the result of the correctness test, once executed. */
00137    private static Boolean valid;

   // Static code - to initialise lookup tables -------------------------------

   static {
      long time = System.currentTimeMillis();

      int ROOT = 0x11d; // para. 2.1 [ANUBIS]
      int i, s, s2, s4, s6, s8, t;
      char c;
      for (i = 0; i < 256; i++) {
         c = Sd.charAt(i >>> 1);
         s = ((i & 1) == 0 ? c >>> 8 : c) & 0xFF;
         S[i] = (byte) s;

         s2 = s << 1;
         if (s2 > 0xFF) {
            s2 ^= ROOT;
         }

         s4 = s2 << 1;
         if (s4 > 0xFF) {
            s4 ^= ROOT;
         }

         s6 = s4 ^ s2;
         s8 = s4 << 1;
         if (s8 > 0xFF) {
            s8 ^= ROOT;
         }

         T0[i] = s  << 24 | s2 << 16 | s4 << 8 | s6;
         T1[i] = s2 << 24 | s  << 16 | s6 << 8 | s4;
         T2[i] = s4 << 24 | s6 << 16 | s  << 8 | s2;
         T3[i] = s6 << 24 | s4 << 16 | s2 << 8 | s;

         T4[i] = s  << 24 | s  << 16 | s  << 8 | s;
         T5[s] = s << 24 | s2 << 16 | s6 << 8 | s8;
      }

      // compute round constant
      for (i = 0, s = 0; i < 18; ) {
         rc[i++] = S[(s++) & 0xFF]         << 24 |
                  (S[(s++) & 0xFF] & 0xFF) << 16 |
                  (S[(s++) & 0xFF] & 0xFF) <<  8 |
                  (S[(s++) & 0xFF] & 0xFF);
      }

      time = System.currentTimeMillis() - time;

      if (DEBUG && debuglevel > 8) {
         System.out.println("==========");
         System.out.println();
         System.out.println("Static data");
         System.out.println();

         System.out.println();
         System.out.println("T0[]:");
         for (i = 0; i < 64; i++) {
            for (t = 0; t < 4; t++) {
               System.out.print("0x"+Util.toString(T0[i*4+t])+", ");
            }
            System.out.println();
         }
         System.out.println();
         System.out.println("T1[]:");
         for (i = 0; i < 64; i++) {
            for (t = 0; t < 4; t++) {
               System.out.print("0x"+Util.toString(T1[i*4+t])+", ");
            }
            System.out.println();
         }
         System.out.println();
         System.out.println("T2[]:");
         for (i = 0; i < 64; i++) {
            for (t = 0; t < 4; t++) {
               System.out.print("0x"+Util.toString(T2[i*4+t])+", ");
            }
            System.out.println();
         }
         System.out.println();
         System.out.println("T3[]:");
         for (i = 0; i < 64; i++) {
            for (t = 0; t < 4; t++) {
               System.out.print("0x"+Util.toString(T3[i*4+t])+", ");
            }
            System.out.println();
         }
         System.out.println();
         System.out.println("T4[]:");
         for (i = 0; i < 64; i++) {
            for (t = 0; t < 4; t++) {
               System.out.print("0x"+Util.toString(T4[i*4+t])+", ");
            }
            System.out.println();
         }
         System.out.println();
         System.out.println("T5[]:");
         for (i = 0; i < 64; i++){
            for (t = 0; t < 4; t++) {
               System.out.print("0x"+Util.toString(T5[i*4+t])+", ");
            }
            System.out.println();
         }
         System.out.println();
         System.out.println("rc[]:");
         for (i = 0; i < 18; i++) {
            System.out.println("0x"+Util.toString(rc[i]));
         }
         System.out.println();

         System.out.println();
         System.out.println("Total initialization time: "+time+" ms.");
         System.out.println();
      }
   }

   // Constructor(s)
   // -------------------------------------------------------------------------

   /** Trivial 0-arguments constructor. */
00258    public Anubis() {
      super(Registry.ANUBIS_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE);
   }

   // Class methods
   // -------------------------------------------------------------------------

   private static void anubis(byte[] in, int i, byte[] out, int j, int[][] K) {
      // extract encryption round keys
      int R = K.length - 1;
      int[] Ker = K[0];

      // mu function + affine key addition
      int a0 = ( in[i++]         << 24 |
                (in[i++] & 0xFF) << 16 |
                (in[i++] & 0xFF) <<  8 |
                (in[i++] & 0xFF)        ) ^ Ker[0];
      int a1 = ( in[i++]         << 24 |
                (in[i++] & 0xFF) << 16 |
                (in[i++] & 0xFF) <<  8 |
                (in[i++] & 0xFF)        ) ^ Ker[1];
      int a2 = ( in[i++]         << 24 |
                (in[i++] & 0xFF) << 16 |
                (in[i++] & 0xFF) <<  8 |
                (in[i++] & 0xFF)        ) ^ Ker[2];
      int a3 = ( in[i++]         << 24 |
                (in[i++] & 0xFF) << 16 |
                (in[i++] & 0xFF) <<  8 |
                (in[i  ] & 0xFF)        ) ^ Ker[3];

      int b0, b1, b2, b3;
      // round function
      for (int r = 1; r < R; r++) {
         Ker = K[r];
         b0 = T0[ a0 >>> 24        ] ^
              T1[ a1 >>> 24        ] ^
              T2[ a2 >>> 24        ] ^
              T3[ a3 >>> 24        ] ^ Ker[0];
         b1 = T0[(a0 >>> 16) & 0xFF] ^
              T1[(a1 >>> 16) & 0xFF] ^
              T2[(a2 >>> 16) & 0xFF] ^
              T3[(a3 >>> 16) & 0xFF] ^ Ker[1];
         b2 = T0[(a0 >>>  8) & 0xFF] ^
              T1[(a1 >>>  8) & 0xFF] ^
              T2[(a2 >>>  8) & 0xFF] ^
              T3[(a3 >>>  8) & 0xFF] ^ Ker[2];
         b3 = T0[ a0         & 0xFF] ^
              T1[ a1         & 0xFF] ^
              T2[ a2         & 0xFF] ^
              T3[ a3         & 0xFF] ^ Ker[3];
         a0 = b0;
         a1 = b1;
         a2 = b2;
         a3 = b3;
         if (DEBUG && debuglevel > 6) {
            System.out.println("T"+r+"="+Util.toString(a0)+Util.toString(a1)
               +Util.toString(a2)+Util.toString(a3));
         }
      }

      // last round function
      Ker = K[R];
      int tt = Ker[0];
      out[j++] = (byte)(S[ a0 >>> 24        ] ^ (tt >>> 24));
      out[j++] = (byte)(S[ a1 >>> 24        ] ^ (tt >>> 16));
      out[j++] = (byte)(S[ a2 >>> 24        ] ^ (tt >>>  8));
      out[j++] = (byte)(S[ a3 >>> 24        ] ^  tt        );
      tt = Ker[1];
      out[j++] = (byte)(S[(a0 >>> 16) & 0xFF] ^ (tt >>> 24));
      out[j++] = (byte)(S[(a1 >>> 16) & 0xFF] ^ (tt >>> 16));
      out[j++] = (byte)(S[(a2 >>> 16) & 0xFF] ^ (tt >>>  8));
      out[j++] = (byte)(S[(a3 >>> 16) & 0xFF] ^  tt        );
      tt = Ker[2];
      out[j++] = (byte)(S[(a0 >>>  8) & 0xFF] ^ (tt >>> 24));
      out[j++] = (byte)(S[(a1 >>>  8) & 0xFF] ^ (tt >>> 16));
      out[j++] = (byte)(S[(a2 >>>  8) & 0xFF] ^ (tt >>>  8));
      out[j++] = (byte)(S[(a3 >>>  8) & 0xFF] ^  tt        );
      tt = Ker[3];
      out[j++] = (byte)(S[ a0         & 0xFF] ^ (tt >>> 24));
      out[j++] = (byte)(S[ a1         & 0xFF] ^ (tt >>> 16));
      out[j++] = (byte)(S[ a2         & 0xFF] ^ (tt >>>  8));
      out[j  ] = (byte)(S[ a3         & 0xFF] ^  tt        );

      if (DEBUG && debuglevel > 6) {
         System.out.println("T="+Util.toString(out, j-15, 16));
         System.out.println();
      }
   }

   // Instance methods
   // -------------------------------------------------------------------------

   // java.lang.Cloneable interface implementation ----------------------------

00352    public Object clone() {
      Anubis result = new Anubis();
      result.currentBlockSize = this.currentBlockSize;

      return result;
   }

   // IBlockCipherSpi interface implementation --------------------------------

00361    public Iterator blockSizes() {
      ArrayList al = new ArrayList();
      al.add(new Integer(DEFAULT_BLOCK_SIZE));

      return Collections.unmodifiableList(al).iterator();
   }

00368    public Iterator keySizes() {
      ArrayList al = new ArrayList();
      for (int n = 4; n < 10; n++) {
         al.add(new Integer(n * 32 / 8));
      }

      return Collections.unmodifiableList(al).iterator();
   }

   /**
    * <p>Expands a user-supplied key material into a session key for a
    * designated <i>block size</i>.</p>
    *
    * @param uk the 32N-bit user-supplied key material; 4 &lt;= N &lt;= 10.
    * @param bs the desired block size in bytes.
    * @return an Object encapsulating the session key.
    * @exception IllegalArgumentException if the block size is not 16 (128-bit).
    * @exception InvalidKeyException if the key data is invalid.
    */
00387    public Object makeKey(byte[] uk, int bs) throws InvalidKeyException {
      if (bs != DEFAULT_BLOCK_SIZE) {
         throw new IllegalArgumentException();
      }
      if (uk == null) {
         throw new InvalidKeyException("Empty key");
      }
      if ((uk.length % 4) != 0) {
         throw new InvalidKeyException("Key is not multiple of 32-bit.");
      }
      int N = uk.length / 4;
      if (N < 4 || N > 10) {
         throw new InvalidKeyException("Key is not 32N; 4 <= N <= 10");
      }
      int R = 8 + N;
      int[][] Ke = new int[R + 1][4]; // encryption round keys
      int[][] Kd = new int[R + 1][4]; // decryption round keys
      int[] tk = new int[N];
      int[] kk = new int[N];
      int r, i, j, k, k0, k1, k2, k3, tt;

      // apply mu to k0
      for (r = 0, i = 0; r < N; ) {
         tk[r++] = uk[i++]         << 24 |
                  (uk[i++] & 0xFF) << 16 |
                  (uk[i++] & 0xFF) <<  8 |
                  (uk[i++] & 0xFF);
      }
      for (r = 0; r <= R; r++) {
         if (r > 0) {
            // psi = key evolution function
            kk[0] = T0[(tk[ 0 ] >>> 24)       ] ^
                    T1[(tk[N-1] >>> 16) & 0xFF] ^
                    T2[(tk[N-2] >>>  8) & 0xFF] ^
                    T3[ tk[N-3]         & 0xFF];
            kk[1] = T0[(tk[ 1 ] >>> 24)       ] ^
                    T1[(tk[ 0 ] >>> 16) & 0xFF] ^
                    T2[(tk[N-1] >>>  8) & 0xFF] ^
                    T3[ tk[N-2]         & 0xFF];
            kk[2] = T0[(tk[ 2 ] >>> 24)       ] ^
                    T1[(tk[ 1 ] >>> 16) & 0xFF] ^
                    T2[(tk[ 0 ] >>>  8) & 0xFF] ^
                    T3[ tk[N-1]         & 0xFF];
            kk[3] = T0[(tk[ 3 ] >>> 24)       ] ^
                    T1[(tk[ 2 ] >>> 16) & 0xFF] ^
                    T2[(tk[ 1 ] >>>  8) & 0xFF] ^
                    T3[ tk[ 0 ]         & 0xFF];

            for (i = 4; i < N; i++) {
               kk[i] = T0[ tk[i  ] >>> 24        ] ^
                       T1[(tk[i-1] >>> 16) & 0xFF] ^
                       T2[(tk[i-2] >>>  8) & 0xFF] ^
                       T3[ tk[i-3]         & 0xFF];
            }
            // apply sigma (affine addition) to round constant
            tk[0] = rc[r-1] ^ kk[0];
            for (i = 1; i < N; i++) {
               tk[i] = kk[i];
            }
         }

         // phi = key selection function
         tt = tk[N-1];
         k0 = T4[ tt >>> 24        ];
         k1 = T4[(tt >>> 16) & 0xFF];
         k2 = T4[(tt >>>  8) & 0xFF];
         k3 = T4[ tt         & 0xFF];

         for (k = N-2; k >= 0; k--) {
            tt = tk[k];
            k0 = T4[ tt >>> 24        ] ^
                (T5[(k0 >>> 24) & 0xFF] & 0xFF000000) ^
                (T5[(k0 >>> 16) & 0xFF] & 0x00FF0000) ^
                (T5[(k0 >>>  8) & 0xFF] & 0x0000FF00) ^
                (T5[ k0         & 0xFF] & 0x000000FF);
            k1 = T4[(tt >>> 16) & 0xFF] ^
                (T5[(k1 >>> 24) & 0xFF] & 0xFF000000) ^
                (T5[(k1 >>> 16) & 0xFF] & 0x00FF0000) ^
                (T5[(k1 >>>  8) & 0xFF] & 0x0000FF00) ^
                (T5[ k1         & 0xFF] & 0x000000FF);
            k2 = T4[(tt >>>  8) & 0xFF] ^
                (T5[(k2 >>> 24) & 0xFF] & 0xFF000000) ^
                (T5[(k2 >>> 16) & 0xFF] & 0x00FF0000) ^
                (T5[(k2 >>>  8) & 0xFF] & 0x0000FF00) ^
                (T5[(k2       ) & 0xFF] & 0x000000FF);
            k3 = T4[ tt         & 0xFF] ^
                (T5[(k3 >>> 24) & 0xFF] & 0xFF000000) ^
                (T5[(k3 >>> 16) & 0xFF] & 0x00FF0000) ^
                (T5[(k3 >>>  8) & 0xFF] & 0x0000FF00) ^
                (T5[ k3         & 0xFF] & 0x000000FF);
         }

         Ke[r][0] = k0;
         Ke[r][1] = k1;
         Ke[r][2] = k2;
         Ke[r][3] = k3;

         if (r == 0 || r == R) {
            Kd[R-r][0] = k0;
            Kd[R-r][1] = k1;
            Kd[R-r][2] = k2;
            Kd[R-r][3] = k3;
         } else {
            Kd[R-r][0] = T0[S[ k0 >>> 24        ] & 0xFF] ^
                         T1[S[(k0 >>> 16) & 0xFF] & 0xFF] ^
                         T2[S[(k0 >>>  8) & 0xFF] & 0xFF] ^
                         T3[S[ k0         & 0xFF] & 0xFF];
            Kd[R-r][1] = T0[S[ k1 >>> 24        ] & 0xFF] ^
                         T1[S[(k1 >>> 16) & 0xFF] & 0xFF] ^
                         T2[S[(k1 >>>  8) & 0xFF] & 0xFF] ^
                         T3[S[ k1         & 0xFF] & 0xFF];
            Kd[R-r][2] = T0[S[ k2 >>> 24        ] & 0xFF] ^
                         T1[S[(k2 >>> 16) & 0xFF] & 0xFF] ^
                         T2[S[(k2 >>>  8) & 0xFF] & 0xFF] ^
                         T3[S[ k2         & 0xFF] & 0xFF];
            Kd[R-r][3] = T0[S[ k3 >>> 24        ] & 0xFF] ^
                         T1[S[(k3 >>> 16) & 0xFF] & 0xFF] ^
                         T2[S[(k3 >>>  8) & 0xFF] & 0xFF] ^
                         T3[S[ k3         & 0xFF] & 0xFF];
         }
      }

      if (DEBUG && debuglevel > 8) {
         System.out.println();
         System.out.println("Key schedule");
         System.out.println();
         System.out.println("Ke[]:");
         for (r = 0; r < R+1; r++) {
            System.out.print("#"+r+": ");
            for (j = 0; j < 4; j++)
               System.out.print("0x"+Util.toString(Ke[r][j])+", ");
            System.out.println();
         }
         System.out.println();
         System.out.println("Kd[]:");
         for (r = 0; r < R+1; r++) {
            System.out.print("#"+r+": ");
            for (j = 0; j < 4; j++)
               System.out.print("0x"+Util.toString(Kd[r][j])+", ");
            System.out.println();
         }
         System.out.println();
      }

      return new Object[] {Ke, Kd};
   }

00534    public void encrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) {
      if (bs != DEFAULT_BLOCK_SIZE) {
         throw new IllegalArgumentException();
      }

      int[][] K = (int[][])((Object[]) k)[0];
      anubis(in, i, out, j, K);
   }

00543    public void decrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) {
      if (bs != DEFAULT_BLOCK_SIZE) {
         throw new IllegalArgumentException();
      }

      int[][] K = (int[][])((Object[]) k)[1];
      anubis(in, i, out, j, K);
   }

00552    public boolean selfTest() {
      if (valid == null) {
         boolean result = super.selfTest(); // do symmetry tests
         if (result) {
            result = testKat(KAT_KEY, KAT_CT);
         }
         valid = new Boolean(result);
      }
      return valid.booleanValue();
   }
}

Generated by  Doxygen 1.6.0   Back to index