Logo Search packages:      
Sourcecode: libgnucrypto-java version File versions  Download package

Twofish.java

package gnu.crypto.cipher;

// ----------------------------------------------------------------------------
// $Id: Twofish.java,v 1.9 2003/04/28 10:36:08 raif Exp $
//
// Copyright (C) 2001, 2002, 2003, Free Software Foundation, Inc.
//
// This file is part of GNU Crypto.
//
// GNU Crypto is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// GNU Crypto is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING.  If not, write to the
//
//    Free Software Foundation Inc.,
//    59 Temple Place - Suite 330,
//    Boston, MA 02111-1307
//    USA
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library.  Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
//
// As a special exception, the copyright holders of this library give
// you permission to link this library with independent modules to
// produce an executable, regardless of the license terms of these
// independent modules, and to copy and distribute the resulting
// executable under terms of your choice, provided that you also meet,
// for each linked independent module, the terms and conditions of the
// license of that module.  An independent module is a module which is
// not derived from or based on this library.  If you modify this
// library, you may extend this exception to your version of the
// library, but you are not obligated to do so.  If you do not wish to
// do so, delete this exception statement from your version.
// ----------------------------------------------------------------------------

import gnu.crypto.Registry;
import gnu.crypto.util.Util;

//import java.io.PrintWriter;
import java.security.InvalidKeyException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;

/**
 * <p>Twofish is a balanced 128-bit Feistel cipher, consisting of 16 rounds. In
 * each round, a 64-bit S-box value is computed from 64 bits of the block, and
 * this value is xored into the other half of the block. The two half-blocks are
 * then exchanged, and the next round begins. Before the first round, all input
 * bits are xored with key-dependent "whitening" subkeys, and after the final
 * round the output bits are xored with other key-dependent whitening subkeys;
 * these subkeys are not used anywhere else in the algorithm.</p>
 *
 * <p>Twofish is designed by Bruce Schneier, Doug Whiting, John Kelsey, Chris
 * Hall, David Wagner and Niels Ferguson.</p>
 *
 * <p>References:</p>
 *
 * <ol>
 *    <li><a href="http://www.counterpane.com/twofish-paper.html">Twofish: A
 *    128-bit Block Cipher</a>.</li>
 * </ol>
 *
 * @version $Revision: 1.9 $
 */
00076 public final class Twofish extends BaseCipher {

   // Debugging methods and variables
   // -------------------------------------------------------------------------

//   private static final String NAME = "twofish";
   private static final boolean DEBUG = false;
   private static final int debuglevel = 9;
//   private static final PrintWriter err = new PrintWriter(System.out, true);
//   private static void debug(String s) {
//      err.println(">>> "+NAME+": "+s);
//   }

   // Constants and variables
   // -------------------------------------------------------------------------

   private static final int DEFAULT_BLOCK_SIZE = 16; // in bytes
   private static final int DEFAULT_KEY_SIZE = 16; // in bytes

   private static final int MAX_ROUNDS = 16; // max # rounds (for allocating subkeys)
   private static final int ROUNDS = MAX_ROUNDS;

   // subkey array indices
   private static final int INPUT_WHITEN = 0;
   private static final int OUTPUT_WHITEN = INPUT_WHITEN +  DEFAULT_BLOCK_SIZE/4;
   private static final int ROUND_SUBKEYS = OUTPUT_WHITEN + DEFAULT_BLOCK_SIZE/4;

//   private static final int TOTAL_SUBKEYS = ROUND_SUBKEYS + 2*MAX_ROUNDS;

   private static final int SK_STEP = 0x02020202;
   private static final int SK_BUMP = 0x01010101;
   private static final int SK_ROTL = 9;

   private static final String[] Pm = new String[] {
      // p0
      "\uA967\uB3E8\u04FD\uA376\u9A92\u8078\uE4DD\uD138"+
      "\u0DC6\u3598\u18F7\uEC6C\u4375\u3726\uFA13\u9448"+
      "\uF2D0\u8B30\u8454\uDF23\u195B\u3D59\uF3AE\uA282"+
      "\u6301\u832E\uD951\u9B7C\uA6EB\uA5BE\u160C\uE361"+
      "\uC08C\u3AF5\u732C\u250B\uBB4E\u896B\u536A\uB4F1"+
      "\uE1E6\uBD45\uE2F4\uB666\uCC95\u0356\uD41C\u1ED7"+
      "\uFBC3\u8EB5\uE9CF\uBFBA\uEA77\u39AF\u33C9\u6271"+
      "\u8179\u09AD\u24CD\uF9D8\uE5C5\uB94D\u4408\u86E7"+
      "\uA11D\uAAED\u0670\uB2D2\u417B\uA011\u31C2\u2790"+
      "\u20F6\u60FF\u965C\uB1AB\u9E9C\u521B\u5F93\u0AEF"+
      "\u9185\u49EE\u2D4F\u8F3B\u4787\u6D46\uD63E\u6964"+
      "\u2ACE\uCB2F\uFC97\u057A\uAC7F\uD51A\u4B0E\uA75A"+
      "\u2814\u3F29\u883C\u4C02\uB8DA\uB017\u551F\u8A7D"+
      "\u57C7\u8D74\uB7C4\u9F72\u7E15\u2212\u5807\u9934"+
      "\u6E50\uDE68\u65BC\uDBF8\uC8A8\u2B40\uDCFE\u32A4"+
      "\uCA10\u21F0\uD35D\u0F00\u6F9D\u3642\u4A5E\uC1E0",
      // p1
      "\u75F3\uC6F4\uDB7B\uFBC8\u4AD3\uE66B\u457D\uE84B"+
      "\uD632\uD8FD\u3771\uF1E1\u300F\uF81B\u87FA\u063F"+
      "\u5EBA\uAE5B\u8A00\uBC9D\u6DC1\uB10E\u805D\uD2D5"+
      "\uA084\u0714\uB590\u2CA3\uB273\u4C54\u9274\u3651"+
      "\u38B0\uBD5A\uFC60\u6296\u6C42\uF710\u7C28\u278C"+
      "\u1395\u9CC7\u2446\u3B70\uCAE3\u85CB\u11D0\u93B8"+
      "\uA683\u20FF\u9F77\uC3CC\u036F\u08BF\u40E7\u2BE2"+
      "\u790C\uAA82\u413A\uEAB9\uE49A\uA497\u7EDA\u7A17"+
      "\u6694\uA11D\u3DF0\uDEB3\u0B72\uA71C\uEFD1\u533E"+
      "\u8F33\u265F\uEC76\u2A49\u8188\uEE21\uC41A\uEBD9"+
      "\uC539\u99CD\uAD31\u8B01\u1823\uDD1F\u4E2D\uF948"+
      "\u4FF2\u658E\u785C\u5819\u8DE5\u9857\u677F\u0564"+
      "\uAF63\uB6FE\uF5B7\u3CA5\uCEE9\u6844\uE04D\u4369"+
      "\u292E\uAC15\u59A8\u0A9E\u6E47\uDF34\u356A\uCFDC"+
      "\u22C9\uC09B\u89D4\uEDAB\u12A2\u0D52\uBB02\u2FA9"+
      "\uD761\u1EB4\u5004\uF6C2\u1625\u8656\u5509\uBE91"
   };

   /** Fixed 8x8 permutation S-boxes */
00147    private static final byte[][] P = new byte[2][256]; // blank final

   /**
    * Define the fixed p0/p1 permutations used in keyed S-box lookup. By
    * changing the following constant definitions, the S-boxes will
    * automatically get changed in the Twofish engine.
    */
00154    private static final int P_00 = 1;
   private static final int P_01 = 0;
   private static final int P_02 = 0;
   private static final int P_03 = P_01 ^ 1;
   private static final int P_04 = 1;

   private static final int P_10 = 0;
   private static final int P_11 = 0;
   private static final int P_12 = 1;
   private static final int P_13 = P_11 ^ 1;
   private static final int P_14 = 0;

   private static final int P_20 = 1;
   private static final int P_21 = 1;
   private static final int P_22 = 0;
   private static final int P_23 = P_21 ^ 1;
   private static final int P_24 = 0;

   private static final int P_30 = 0;
   private static final int P_31 = 1;
   private static final int P_32 = 1;
   private static final int P_33 = P_31 ^ 1;
   private static final int P_34 = 1;

   /** Primitive polynomial for GF(256) */
//   private static final int GF256_FDBK =   0x169;
00180    private static final int GF256_FDBK_2 = 0x169 / 2;
   private static final int GF256_FDBK_4 = 0x169 / 4;

   /** MDS matrix */
00184    private static final int[][] MDS = new int[4][256]; // blank final

   private static final int RS_GF_FDBK = 0x14D; // field generator

   /**
    * KAT vector (from ecb_vk):
    * I=183
    * KEY=0000000000000000000000000000000000000000000002000000000000000000
    * CT=F51410475B33FBD3DB2117B5C17C82D4
    */
00194    private static final byte[] KAT_KEY =
         Util.toBytesFromString("0000000000000000000000000000000000000000000002000000000000000000");
   private static final byte[] KAT_CT =
         Util.toBytesFromString("F51410475B33FBD3DB2117B5C17C82D4");

   /** caches the result of the correctness test, once executed. */
00200    private static Boolean valid;

   // Static code - to intialise the MDS matrix and lookup tables -------------

   static {
      long time = System.currentTimeMillis();

      // expand the P arrays
      int i;
      char c;
      for (i = 0; i < 256; i++) {
         c = Pm[0].charAt(i >>> 1);
         P[0][i] = (byte)((i & 1) == 0 ? c >>> 8 : c);

         c = Pm[1].charAt(i >>> 1);
         P[1][i] = (byte)((i & 1) == 0 ? c >>> 8 : c);
      }

      // precompute the MDS matrix
      int[] m1 = new int[2];
      int[] mX = new int[2];
      int[] mY = new int[2];
      int j;
      for (i = 0; i < 256; i++) {
         j = P[0][i]       & 0xFF; // compute all the matrix elements
         m1[0] = j;
         mX[0] = Mx_X( j ) & 0xFF;
         mY[0] = Mx_Y( j ) & 0xFF;

         j = P[1][i]       & 0xFF;
         m1[1] = j;
         mX[1] = Mx_X( j ) & 0xFF;
         mY[1] = Mx_Y( j ) & 0xFF;

         MDS[0][i] = m1[P_00] <<  0 | // fill matrix w/ above elements
                     mX[P_00] <<  8 |
                     mY[P_00] << 16 |
                     mY[P_00] << 24;
         MDS[1][i] = mY[P_10] <<  0 |
                     mY[P_10] <<  8 |
                     mX[P_10] << 16 |
                     m1[P_10] << 24;
         MDS[2][i] = mX[P_20] <<  0 |
                     mY[P_20] <<  8 |
                     m1[P_20] << 16 |
                     mY[P_20] << 24;
         MDS[3][i] = mX[P_30] <<  0 |
                     m1[P_30] <<  8 |
                     mY[P_30] << 16 |
                     mX[P_30] << 24;
      }

      time = System.currentTimeMillis() - time;

      if (DEBUG && debuglevel > 8) {
         System.out.println("==========");
         System.out.println();
         System.out.println("Static Data");
         System.out.println();
         System.out.println("MDS[0][]:");
         for (i = 0;i < 64; i++) {
            for(j = 0; j < 4; j++) {
               System.out.print("0x"+Util.toString(MDS[0][i*4+j])+", ");
            }
            System.out.println();
         }

         System.out.println();
         System.out.println("MDS[1][]:");
         for (i = 0;i < 64; i++) {
            for(j = 0; j < 4; j++) {
               System.out.print("0x"+Util.toString(MDS[1][i*4+j])+", ");
            }
            System.out.println();
         }

         System.out.println();
         System.out.println("MDS[2][]:");
         for (i = 0;i < 64; i++) {
            for(j = 0; j < 4; j++) {
               System.out.print("0x"+Util.toString(MDS[2][i*4+j])+", ");
            }
            System.out.println();
         }

         System.out.println();
         System.out.println("MDS[3][]:");
         for (i = 0;i < 64; i++) {
            for(j = 0; j < 4; j++) {
               System.out.print("0x"+Util.toString(MDS[3][i*4+j])+", ");
            }
            System.out.println();
         }

         System.out.println();
         System.out.println("Total initialization time: "+time+" ms.");
         System.out.println();
      }
   }

   private static final int LFSR1(int x) {
      return (x >> 1) ^ ((x & 0x01) != 0 ? GF256_FDBK_2 : 0);
   }

   private static final int LFSR2(int x) {
      return (x >> 2) ^
            ((x & 0x02) != 0 ? GF256_FDBK_2 : 0) ^
            ((x & 0x01) != 0 ? GF256_FDBK_4 : 0);
   }

//   private static final int Mx_1(int x) {
//      return x;
//   }

   private static final int Mx_X(int x) {  // 5B
      return x ^ LFSR2(x);
   }

   private static final int Mx_Y(int x) { // EF
      return x ^ LFSR1(x) ^ LFSR2(x);
   }

   // Constructor(s)
   // -------------------------------------------------------------------------

   /** Trivial 0-arguments constructor. */
00326    public Twofish() {
      super(Registry.TWOFISH_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE);
   }

   // Class methods
   // -------------------------------------------------------------------------

   private static final int b0(int x) {
      return  x & 0xFF;
   }

   private static final int b1(int x) {
      return (x >>> 8) & 0xFF;
   }

   private static final int b2(int x) {
      return (x >>> 16) & 0xFF;
   }

   private static final int b3(int x) {
      return (x >>> 24) & 0xFF;
   }

   /**
    * Use (12, 8) Reed-Solomon code over GF(256) to produce a key S-box 32-bit
    * entity from two key material 32-bit entities.
    *
    * @param k0 1st 32-bit entity.
    * @param k1 2nd 32-bit entity.
    * @return remainder polynomial generated using RS code
    */
00357    private static final int RS_MDS_Encode(int k0, int k1) {
      int r = k1;
      int i;
      for (i = 0; i < 4; i++) { // shift 1 byte at a time
         r = RS_rem(r);
      }
      r ^= k0;
      for (i = 0; i < 4; i++) {
         r = RS_rem(r);
      }
      return r;
   }

   /**
    * Reed-Solomon code parameters: (12, 8) reversible code:<p>
    * <pre>
    *   g(x) = x**4 + (a + 1/a) x**3 + a x**2 + (a + 1/a) x + 1
    * </pre>
    * where a = primitive root of field generator 0x14D
    */
00377    private static final int RS_rem(int x) {
      int b  =  (x >>> 24) & 0xFF;
      int g2 = ((b  <<  1) ^ ( (b & 0x80) != 0 ? RS_GF_FDBK : 0 )) & 0xFF;
      int g3 =  (b >>>  1) ^ ( (b & 0x01) != 0 ? (RS_GF_FDBK >>> 1) : 0 ) ^ g2 ;
      int result = (x << 8) ^ (g3 << 24) ^ (g2 << 16) ^ (g3 << 8) ^ b;
      return result;
   }

   private static final int F32(int k64Cnt, int x, int[] k32) {
      int b0 = b0(x);
      int b1 = b1(x);
      int b2 = b2(x);
      int b3 = b3(x);
      int k0 = k32[0];
      int k1 = k32[1];
      int k2 = k32[2];
      int k3 = k32[3];

      int result = 0;
      switch (k64Cnt & 3) {
      case 1:
         result =
            MDS[0][(P[P_01][b0] & 0xFF) ^ b0(k0)] ^
            MDS[1][(P[P_11][b1] & 0xFF) ^ b1(k0)] ^
            MDS[2][(P[P_21][b2] & 0xFF) ^ b2(k0)] ^
            MDS[3][(P[P_31][b3] & 0xFF) ^ b3(k0)];
         break;
      case 0:  // same as 4
         b0 = (P[P_04][b0] & 0xFF) ^ b0(k3);
         b1 = (P[P_14][b1] & 0xFF) ^ b1(k3);
         b2 = (P[P_24][b2] & 0xFF) ^ b2(k3);
         b3 = (P[P_34][b3] & 0xFF) ^ b3(k3);
      case 3:
         b0 = (P[P_03][b0] & 0xFF) ^ b0(k2);
         b1 = (P[P_13][b1] & 0xFF) ^ b1(k2);
         b2 = (P[P_23][b2] & 0xFF) ^ b2(k2);
         b3 = (P[P_33][b3] & 0xFF) ^ b3(k2);
      case 2:                           // 128-bit keys (optimize for this case)
         result =
            MDS[0][(P[P_01][(P[P_02][b0] & 0xFF) ^ b0(k1)] & 0xFF) ^ b0(k0)] ^
            MDS[1][(P[P_11][(P[P_12][b1] & 0xFF) ^ b1(k1)] & 0xFF) ^ b1(k0)] ^
            MDS[2][(P[P_21][(P[P_22][b2] & 0xFF) ^ b2(k1)] & 0xFF) ^ b2(k0)] ^
            MDS[3][(P[P_31][(P[P_32][b3] & 0xFF) ^ b3(k1)] & 0xFF) ^ b3(k0)];
         break;
      }
      return result;
   }

   private static final int Fe32(int[] sBox, int x, int R) {
      return sBox[        2*_b(x, R  )    ] ^
             sBox[        2*_b(x, R+1) + 1] ^
             sBox[0x200 + 2*_b(x, R+2)    ] ^
             sBox[0x200 + 2*_b(x, R+3) + 1];
   }

   private static final int _b(int x, int N) {
//      int result = 0;
//      switch (N%4) {
//      case 0: result = b0(x); break;
//      case 1: result = b1(x); break;
//      case 2: result = b2(x); break;
//      case 3: result = b3(x); break;
//      }
//      return result;
      // profiling shows that the code spends too long in this method.
      // following constructs seem to improve, albeit marginally, performance
      switch (N%4) {
      case 0:  return  x         & 0xFF;
      case 1:  return (x >>> 8)  & 0xFF;
      case 2:  return (x >>> 16) & 0xFF;
      default: return  x >>> 24;
      }
   }

   // Instance methods
   // -------------------------------------------------------------------------

   // java.lang.Cloneable interface implementation ----------------------------

00456    public Object clone() {
      Twofish result = new Twofish();
      result.currentBlockSize = this.currentBlockSize;

      return result;
   }

   // IBlockCipherSpi interface implementation --------------------------------

00465    public Iterator blockSizes() {
      ArrayList al = new ArrayList();
      al.add(new Integer(DEFAULT_BLOCK_SIZE));

      return Collections.unmodifiableList(al).iterator();
   }

00472    public Iterator keySizes() {
      ArrayList al = new ArrayList();
      al.add(new Integer(8)); //   64-bit
      al.add(new Integer(16)); // 128-bit
      al.add(new Integer(24)); // 192-bit
      al.add(new Integer(32)); // 256-bit

      return Collections.unmodifiableList(al).iterator();
   }

   /**
    * <p>Expands a user-supplied key material into a session key for a designated
    * <i>block size</i>.</p>
    *
    * @param k the 64/128/192/256-bit user-key to use.
    * @param bs the desired block size in bytes.
    * @return an Object encapsulating the session key.
    * @exception IllegalArgumentException if the block size is not 16 (128-bit).
    * @exception InvalidKeyException if the key data is invalid.
    */
00492    public Object makeKey(byte[] k, int bs) throws InvalidKeyException {
      if (bs != DEFAULT_BLOCK_SIZE) {
         throw new IllegalArgumentException();
      }
      if (k == null) {
         throw new InvalidKeyException("Empty key");
      }
      int length = k.length;
      if (!(length == 8 || length == 16 || length == 24 || length == 32)) {
          throw new InvalidKeyException("Incorrect key length");
      }

      int k64Cnt = length / 8;
      int subkeyCnt = ROUND_SUBKEYS + 2*ROUNDS;
      int[] k32e = new int[4]; // even 32-bit entities
      int[] k32o = new int[4]; // odd 32-bit entities
      int[] sBoxKey = new int[4];
      //
      // split user key material into even and odd 32-bit entities and
      // compute S-box keys using (12, 8) Reed-Solomon code over GF(256)
      //
      int i, j, offset = 0;
      for (i = 0, j = k64Cnt-1; i < 4 && offset < length; i++, j--) {
         k32e[i] = (k[offset++] & 0xFF)       |
                   (k[offset++] & 0xFF) <<  8 |
                   (k[offset++] & 0xFF) << 16 |
                   (k[offset++] & 0xFF) << 24;
         k32o[i] = (k[offset++] & 0xFF)       |
                   (k[offset++] & 0xFF) <<  8 |
                   (k[offset++] & 0xFF) << 16 |
                   (k[offset++] & 0xFF) << 24;
         sBoxKey[j] = RS_MDS_Encode(k32e[i], k32o[i]); // reverse order
      }
      // compute the round decryption subkeys for PHT. these same subkeys
      // will be used in encryption but will be applied in reverse order.
      int q, A, B;
      int[] subKeys = new int[subkeyCnt];
      for (i = q = 0; i < subkeyCnt/2; i++, q += SK_STEP) {
         A = F32(k64Cnt, q        , k32e); // A uses even key entities
         B = F32(k64Cnt, q+SK_BUMP, k32o); // B uses odd  key entities
         B = B << 8 | B >>> 24;
         A += B;
         subKeys[2*i    ] = A;               // combine with a PHT
         A += B;
         subKeys[2*i + 1] = A << SK_ROTL | A >>> (32-SK_ROTL);
      }

      // fully expand the table for speed
      int k0 = sBoxKey[0];
      int k1 = sBoxKey[1];
      int k2 = sBoxKey[2];
      int k3 = sBoxKey[3];
      int b0, b1, b2, b3;
      int[] sBox = new int[4 * 256];
      for (i = 0; i < 256; i++) {
         b0 = b1 = b2 = b3 = i;
         switch (k64Cnt & 3) {
         case 1:
            sBox[      2*i  ] = MDS[0][(P[P_01][b0] & 0xFF) ^ b0(k0)];
            sBox[      2*i+1] = MDS[1][(P[P_11][b1] & 0xFF) ^ b1(k0)];
            sBox[0x200+2*i  ] = MDS[2][(P[P_21][b2] & 0xFF) ^ b2(k0)];
            sBox[0x200+2*i+1] = MDS[3][(P[P_31][b3] & 0xFF) ^ b3(k0)];
            break;
         case 0: // same as 4
            b0 = (P[P_04][b0] & 0xFF) ^ b0(k3);
            b1 = (P[P_14][b1] & 0xFF) ^ b1(k3);
            b2 = (P[P_24][b2] & 0xFF) ^ b2(k3);
            b3 = (P[P_34][b3] & 0xFF) ^ b3(k3);
         case 3:
            b0 = (P[P_03][b0] & 0xFF) ^ b0(k2);
            b1 = (P[P_13][b1] & 0xFF) ^ b1(k2);
            b2 = (P[P_23][b2] & 0xFF) ^ b2(k2);
            b3 = (P[P_33][b3] & 0xFF) ^ b3(k2);
         case 2: // 128-bit keys
            sBox[      2*i  ] = MDS[0][(P[P_01][(P[P_02][b0] & 0xFF) ^ b0(k1)] & 0xFF) ^ b0(k0)];
            sBox[      2*i+1] = MDS[1][(P[P_11][(P[P_12][b1] & 0xFF) ^ b1(k1)] & 0xFF) ^ b1(k0)];
            sBox[0x200+2*i  ] = MDS[2][(P[P_21][(P[P_22][b2] & 0xFF) ^ b2(k1)] & 0xFF) ^ b2(k0)];
            sBox[0x200+2*i+1] = MDS[3][(P[P_31][(P[P_32][b3] & 0xFF) ^ b3(k1)] & 0xFF) ^ b3(k0)];
         }
      }

      if (DEBUG && debuglevel > 7) {
         System.out.println("S-box[]:");
         for (i = 0; i < 64; i++) {
            for (j = 0; j < 4; j++) {
               System.out.print("0x"+Util.toString(sBox[i*4+j])+", ");
            }
            System.out.println();
         }
         System.out.println();
         for (i = 0; i < 64; i++) {
            for (j = 0; j < 4; j++) {
               System.out.print("0x"+Util.toString(sBox[256+i*4+j])+", ");
            }
            System.out.println();
         }
         System.out.println();
         for (i = 0; i < 64; i++) {
            for (j = 0; j < 4; j++) {
               System.out.print("0x"+Util.toString(sBox[512+i*4+j])+", ");
            }
            System.out.println();
         }
         System.out.println();
         for (i = 0; i < 64; i++) {
            for (j = 0; j < 4; j++) {
               System.out.print("0x"+Util.toString(sBox[768+i*4+j])+", ");
            }
            System.out.println();
         }
         System.out.println();
         System.out.println("User (odd, even) keys  --> S-Box keys:");
         for (i = 0; i < k64Cnt; i++) {
            System.out.println("0x"+Util.toString(k32o[i])
               +"  0x"+Util.toString(k32e[i])
               +" --> 0x"+Util.toString(sBoxKey[k64Cnt-1-i]));
         }
         System.out.println();
         System.out.println("Round keys:");
         for (i = 0; i < ROUND_SUBKEYS + 2*ROUNDS; i += 2) {
            System.out.println("0x"+Util.toString(subKeys[i])
               +"  0x"+Util.toString(subKeys[i+1]));
         }
         System.out.println();
      }

      return new Object[] {sBox, subKeys};
   }

00621    public void encrypt(byte[] in, int inOffset, byte[] out, int outOffset,
                       Object sessionKey, int bs) {
      if (bs != DEFAULT_BLOCK_SIZE) {
         throw new IllegalArgumentException();
      }

      Object[] sk = (Object[]) sessionKey; // extract S-box and session key
      int[] sBox = (int[]) sk[0];
      int[] sKey = (int[]) sk[1];

      if (DEBUG && debuglevel > 6) {
         System.out.println("PT="+Util.toString(in, inOffset, bs));
      }

      int x0 = (in[inOffset++] & 0xFF)       |
               (in[inOffset++] & 0xFF) <<  8 |
               (in[inOffset++] & 0xFF) << 16 |
               (in[inOffset++] & 0xFF) << 24;
      int x1 = (in[inOffset++] & 0xFF)       |
               (in[inOffset++] & 0xFF) <<  8 |
               (in[inOffset++] & 0xFF) << 16 |
               (in[inOffset++] & 0xFF) << 24;
      int x2 = (in[inOffset++] & 0xFF)       |
               (in[inOffset++] & 0xFF) <<  8 |
               (in[inOffset++] & 0xFF) << 16 |
               (in[inOffset++] & 0xFF) << 24;
      int x3 = (in[inOffset++] & 0xFF)       |
               (in[inOffset++] & 0xFF) <<  8 |
               (in[inOffset++] & 0xFF) << 16 |
               (in[inOffset++] & 0xFF) << 24;

      x0 ^= sKey[INPUT_WHITEN    ];
      x1 ^= sKey[INPUT_WHITEN + 1];
      x2 ^= sKey[INPUT_WHITEN + 2];
      x3 ^= sKey[INPUT_WHITEN + 3];
      if (DEBUG && debuglevel > 6) {
         System.out.println("PTw="
            +Util.toString(x0)+Util.toString(x1)
            +Util.toString(x2)+Util.toString(x3));
      }

      int t0, t1;
      int k = ROUND_SUBKEYS;
      for (int R = 0; R < ROUNDS; R += 2) {
         t0 = Fe32(sBox, x0, 0);
         t1 = Fe32(sBox, x1, 3);
         x2 ^= t0 + t1 + sKey[k++];
         x2  = x2 >>> 1 | x2 << 31;
         x3  = x3 << 1 | x3 >>> 31;
         x3 ^= t0 + 2*t1 + sKey[k++];
         if (DEBUG && debuglevel > 6) {
            System.out.println("CT"+(R)+"="
               +Util.toString(x0)+Util.toString(x1)
               +Util.toString(x2)+Util.toString(x3));
         }

         t0 = Fe32(sBox, x2, 0);
         t1 = Fe32(sBox, x3, 3);
         x0 ^= t0 + t1 + sKey[k++];
         x0  = x0 >>> 1 | x0 << 31;
         x1  = x1 << 1 | x1 >>> 31;
         x1 ^= t0 + 2*t1 + sKey[k++];
         if (DEBUG && debuglevel > 6) {
            System.out.println("CT"+(R+1)+"="
               +Util.toString(x0)+Util.toString(x1)
               +Util.toString(x2)+Util.toString(x3));
         }
      }
      x2 ^= sKey[OUTPUT_WHITEN    ];
      x3 ^= sKey[OUTPUT_WHITEN + 1];
      x0 ^= sKey[OUTPUT_WHITEN + 2];
      x1 ^= sKey[OUTPUT_WHITEN + 3];
      if (DEBUG && debuglevel > 6) {
         System.out.println("CTw="
            +Util.toString(x0)+Util.toString(x1)
            +Util.toString(x2)+Util.toString(x3));
      }

      out[outOffset++] = (byte) x2;
      out[outOffset++] = (byte)(x2 >>>  8);
      out[outOffset++] = (byte)(x2 >>> 16);
      out[outOffset++] = (byte)(x2 >>> 24);
      out[outOffset++] = (byte) x3;
      out[outOffset++] = (byte)(x3 >>>  8);
      out[outOffset++] = (byte)(x3 >>> 16);
      out[outOffset++] = (byte)(x3 >>> 24);
      out[outOffset++] = (byte) x0;
      out[outOffset++] = (byte)(x0 >>>  8);
      out[outOffset++] = (byte)(x0 >>> 16);
      out[outOffset++] = (byte)(x0 >>> 24);
      out[outOffset++] = (byte) x1;
      out[outOffset++] = (byte)(x1 >>>  8);
      out[outOffset++] = (byte)(x1 >>> 16);
      out[outOffset  ] = (byte)(x1 >>> 24);

      if (DEBUG && debuglevel > 6) {
         System.out.println("CT="+Util.toString(out, outOffset-15, 16));
         System.out.println();
      }
   }

00722    public void decrypt(byte[] in, int inOffset, byte[] out, int outOffset,
                       Object sessionKey, int bs) {
      if (bs != DEFAULT_BLOCK_SIZE) {
         throw new IllegalArgumentException();
      }

      Object[] sk = (Object[]) sessionKey; // extract S-box and session key
      int[] sBox = (int[]) sk[0];
      int[] sKey = (int[]) sk[1];

      if (DEBUG && debuglevel > 6) {
         System.out.println("CT="+Util.toString(in, inOffset, bs));
      }

      int x2 = (in[inOffset++] & 0xFF)       |
               (in[inOffset++] & 0xFF) <<  8 |
               (in[inOffset++] & 0xFF) << 16 |
               (in[inOffset++] & 0xFF) << 24;
      int x3 = (in[inOffset++] & 0xFF)       |
               (in[inOffset++] & 0xFF) <<  8 |
               (in[inOffset++] & 0xFF) << 16 |
               (in[inOffset++] & 0xFF) << 24;
      int x0 = (in[inOffset++] & 0xFF)       |
               (in[inOffset++] & 0xFF) <<  8 |
               (in[inOffset++] & 0xFF) << 16 |
               (in[inOffset++] & 0xFF) << 24;
      int x1 = (in[inOffset++] & 0xFF)       |
               (in[inOffset++] & 0xFF) <<  8 |
               (in[inOffset++] & 0xFF) << 16 |
               (in[inOffset++] & 0xFF) << 24;

      x2 ^= sKey[OUTPUT_WHITEN    ];
      x3 ^= sKey[OUTPUT_WHITEN + 1];
      x0 ^= sKey[OUTPUT_WHITEN + 2];
      x1 ^= sKey[OUTPUT_WHITEN + 3];
      if (DEBUG && debuglevel > 6) {
         System.out.println("CTw="
            +Util.toString(x2)+Util.toString(x3)
            +Util.toString(x0)+Util.toString(x1));
      }

      int k = ROUND_SUBKEYS + 2*ROUNDS - 1;
      int t0, t1;
      for (int R = 0; R < ROUNDS; R += 2) {
         t0 = Fe32(sBox, x2, 0);
         t1 = Fe32(sBox, x3, 3);
         x1 ^= t0 + 2*t1 + sKey[k--];
         x1  = x1 >>> 1 | x1 << 31;
         x0  = x0 << 1 | x0 >>> 31;
         x0 ^= t0 + t1 + sKey[k--];
         if (DEBUG && debuglevel > 6) {
            System.out.println("PT"+(ROUNDS-R)+"="
               +Util.toString(x2)+Util.toString(x3)
               +Util.toString(x0)+Util.toString(x1));
         }

         t0 = Fe32(sBox, x0, 0);
         t1 = Fe32(sBox, x1, 3);
         x3 ^= t0 + 2*t1 + sKey[k--];
         x3  = x3 >>> 1 | x3 << 31;
         x2  = x2 << 1 | x2 >>> 31;
         x2 ^= t0 + t1 + sKey[k--];
         if (DEBUG && debuglevel > 6) {
            System.out.println("PT"+(ROUNDS-R-1)+"="+
               Util.toString(x2)+Util.toString(x3)+
               Util.toString(x0)+Util.toString(x1));
         }
      }
      x0 ^= sKey[INPUT_WHITEN    ];
      x1 ^= sKey[INPUT_WHITEN + 1];
      x2 ^= sKey[INPUT_WHITEN + 2];
      x3 ^= sKey[INPUT_WHITEN + 3];
      if (DEBUG && debuglevel > 6) {
         System.out.println("PTw="
            +Util.toString(x2)+Util.toString(x3)
            +Util.toString(x0)+Util.toString(x1));
      }

      out[outOffset++] = (byte) x0;
      out[outOffset++] = (byte)(x0 >>>  8);
      out[outOffset++] = (byte)(x0 >>> 16);
      out[outOffset++] = (byte)(x0 >>> 24);
      out[outOffset++] = (byte) x1;
      out[outOffset++] = (byte)(x1 >>>  8);
      out[outOffset++] = (byte)(x1 >>> 16);
      out[outOffset++] = (byte)(x1 >>> 24);
      out[outOffset++] = (byte) x2;
      out[outOffset++] = (byte)(x2 >>>  8);
      out[outOffset++] = (byte)(x2 >>> 16);
      out[outOffset++] = (byte)(x2 >>> 24);
      out[outOffset++] = (byte) x3;
      out[outOffset++] = (byte)(x3 >>>  8);
      out[outOffset++] = (byte)(x3 >>> 16);
      out[outOffset  ] = (byte)(x3 >>> 24);

      if (DEBUG && debuglevel > 6) {
         System.out.println("PT="+Util.toString(out, outOffset-15, 16));
         System.out.println();
      }
   }

00823    public boolean selfTest() {
      if (valid == null) {
         boolean result = super.selfTest(); // do symmetry tests
         if (result) {
            result = testKat(KAT_KEY, KAT_CT);
         }
         valid = new Boolean(result);
      }
      return valid.booleanValue();
   }
}

Generated by  Doxygen 1.6.0   Back to index