Logo Search packages:      
Sourcecode: libgnucrypto-java version File versions  Download package

Rijndael.java

package gnu.crypto.cipher;

// ----------------------------------------------------------------------------
// $Id: Rijndael.java,v 1.8 2003/04/28 10:30:54 raif Exp $
//
// Copyright (C) 2001, 2002, 2003, Free Software Foundation, Inc.
//
// This file is part of GNU Crypto.
//
// GNU Crypto is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// GNU Crypto is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING.  If not, write to the
//
//    Free Software Foundation Inc.,
//    59 Temple Place - Suite 330,
//    Boston, MA 02111-1307
//    USA
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library.  Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
//
// As a special exception, the copyright holders of this library give
// you permission to link this library with independent modules to
// produce an executable, regardless of the license terms of these
// independent modules, and to copy and distribute the resulting
// executable under terms of your choice, provided that you also meet,
// for each linked independent module, the terms and conditions of the
// license of that module.  An independent module is a module which is
// not derived from or based on this library.  If you modify this
// library, you may extend this exception to your version of the
// library, but you are not obligated to do so.  If you do not wish to
// do so, delete this exception statement from your version.
// ----------------------------------------------------------------------------

import gnu.crypto.Registry;
import gnu.crypto.util.Util;

//import java.io.PrintWriter;
import java.security.InvalidKeyException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;

/**
 * <p>Rijndael --pronounced Reindaal-- is the AES. It is a variable block-size
 * (128-, 192- and 256-bit), variable key-size (128-, 192- and 256-bit)
 * symmetric key block cipher.</p>
 *
 * <p>References:</p>
 *
 * <ol>
 *    <li><a href="http://www.esat.kuleuven.ac.be/~rijmen/rijndael/">The
 *    Rijndael Block Cipher - AES Proposal</a>.<br>
 *    <a href="mailto:vincent.rijmen@esat.kuleuven.ac.be">Vincent Rijmen</a> and
 *    <a href="mailto:daemen.j@protonworld.com">Joan Daemen</a>.</li>
 * </ol>
 *
 * @version $Revision: 1.8 $
 */
public final class Rijndael extends BaseCipher {

   // Debugging methods and variables
   // -------------------------------------------------------------------------

//   private static final String NAME = "rijndael";
   private static final boolean DEBUG = false;
   private static final int debuglevel = 9;
//   private static final PrintWriter err = new PrintWriter(System.out, true);
//   private static void debug(String s) {
//      err.println(">>> "+NAME+": "+s);
//   }

   // Constants and variables
   // -------------------------------------------------------------------------

   private static final int DEFAULT_BLOCK_SIZE = 16; // in bytes
   private static final int DEFAULT_KEY_SIZE = 16; // in bytes
   private static final String SS =
      "\u637C\u777B\uF26B\u6FC5\u3001\u672B\uFED7\uAB76" +
      "\uCA82\uC97D\uFA59\u47F0\uADD4\uA2AF\u9CA4\u72C0" +
      "\uB7FD\u9326\u363F\uF7CC\u34A5\uE5F1\u71D8\u3115" +
      "\u04C7\u23C3\u1896\u059A\u0712\u80E2\uEB27\uB275" +
      "\u0983\u2C1A\u1B6E\u5AA0\u523B\uD6B3\u29E3\u2F84" +
      "\u53D1\u00ED\u20FC\uB15B\u6ACB\uBE39\u4A4C\u58CF" +
      "\uD0EF\uAAFB\u434D\u3385\u45F9\u027F\u503C\u9FA8" +
      "\u51A3\u408F\u929D\u38F5\uBCB6\uDA21\u10FF\uF3D2" +
      "\uCD0C\u13EC\u5F97\u4417\uC4A7\u7E3D\u645D\u1973" +
      "\u6081\u4FDC\u222A\u9088\u46EE\uB814\uDE5E\u0BDB" +
      "\uE032\u3A0A\u4906\u245C\uC2D3\uAC62\u9195\uE479" +
      "\uE7C8\u376D\u8DD5\u4EA9\u6C56\uF4EA\u657A\uAE08" +
      "\uBA78\u252E\u1CA6\uB4C6\uE8DD\u741F\u4BBD\u8B8A" +
      "\u703E\uB566\u4803\uF60E\u6135\u57B9\u86C1\u1D9E" +
      "\uE1F8\u9811\u69D9\u8E94\u9B1E\u87E9\uCE55\u28DF" +
      "\u8CA1\u890D\uBFE6\u4268\u4199\u2D0F\uB054\uBB16";

   private static final byte[] S =  new byte[256];
   private static final byte[] Si = new byte[256];
   private static final int[] T1 = new int[256];
   private static final int[] T2 = new int[256];
   private static final int[] T3 = new int[256];
   private static final int[] T4 = new int[256];
   private static final int[] T5 = new int[256];
   private static final int[] T6 = new int[256];
   private static final int[] T7 = new int[256];
   private static final int[] T8 = new int[256];
   private static final int[] U1 = new int[256];
   private static final int[] U2 = new int[256];
   private static final int[] U3 = new int[256];
   private static final int[] U4 = new int[256];
   private static final byte[] rcon = new byte[30];

   private static final int[][][] shifts = new int[][][] {
      { {0, 0}, {1, 3}, {2, 2}, {3, 1} },
      { {0, 0}, {1, 5}, {2, 4}, {3, 3} },
      { {0, 0}, {1, 7}, {3, 5}, {4, 4} }
   };

   /**
    * KAT vector (from ecb_vk):
    * I=96
    * KEY=0000000000000000000000010000000000000000000000000000000000000000
    * CT=E44429474D6FC3084EB2A6B8B46AF754
    */
   private static final byte[] KAT_KEY =
         Util.toBytesFromString("0000000000000000000000010000000000000000000000000000000000000000");
   private static final byte[] KAT_CT =
         Util.toBytesFromString("E44429474D6FC3084EB2A6B8B46AF754");

   /** caches the result of the correctness test, once executed. */
   private static Boolean valid;

   // Static code - to intialise lookup tables --------------------------------

   static {
      long time = System.currentTimeMillis();

      int ROOT = 0x11B;
      int i, j = 0;

      // S-box, inverse S-box, T-boxes, U-boxes
      int s, s2, s3, i2, i4, i8, i9, ib, id, ie, t;
      char c;
      for (i = 0; i < 256; i++) {
         c = SS.charAt(i >>> 1);
         S[i] = (byte)(((i & 1) == 0) ? c >>> 8 : c & 0xFF);
         s = S[i] & 0xFF;
         Si[s] = (byte)i;
         s2 = s << 1;
         if (s2 >= 0x100) {
            s2 ^= ROOT;
         }
         s3 = s2 ^ s;
         i2 = i << 1;
         if (i2 >= 0x100) {
            i2 ^= ROOT;
         }
         i4 = i2 << 1;
         if (i4 >= 0x100) {
            i4 ^= ROOT;
         }
         i8 = i4 << 1;
         if (i8 >= 0x100) {
            i8 ^= ROOT;
         }
         i9 = i8 ^ i;
         ib = i9 ^ i2;
         id = i9 ^ i4;
         ie = i8 ^ i4 ^ i2;

         T1[i] = t = (s2 << 24) | (s << 16) | (s << 8) | s3;
         T2[i] = (t >>>  8) | (t << 24);
         T3[i] = (t >>> 16) | (t << 16);
         T4[i] = (t >>> 24) | (t <<  8);

         T5[s] = U1[i] = t = (ie << 24) | (i9 << 16) | (id << 8) | ib;
         T6[s] = U2[i] = (t >>>  8) | (t << 24);
         T7[s] = U3[i] = (t >>> 16) | (t << 16);
         T8[s] = U4[i] = (t >>> 24) | (t <<  8);
      }
      //
      // round constants
      //
      int r = 1;
      rcon[0] = 1;
      for (i = 1; i < 30; i++) {
         r <<= 1;
         if (r >= 0x100) {
            r ^= ROOT;
         }
         rcon[i] = (byte)r;
      }

      time = System.currentTimeMillis() - time;

      if (DEBUG && debuglevel > 8) {
         System.out.println("==========");
         System.out.println();
         System.out.println("Static Data");
         System.out.println();
         System.out.println("S[]:");
         for (i = 0; i < 16; i++) {
            for (j = 0; j < 16; j++) {
               System.out.print("0x"+Util.toString(S[i*16+j])+", ");
            }
            System.out.println();
         }
         System.out.println();
         System.out.println("Si[]:");
         for (i = 0; i < 16; i++) {
            for (j = 0; j < 16; j++) {
               System.out.print("0x"+Util.toString(Si[i*16+j])+", ");
            }
            System.out.println();
         }

         System.out.println();
         System.out.println("T1[]:");
         for (i = 0; i < 64; i++) {
            for (j = 0; j < 4; j++) {
               System.out.print("0x"+Util.toString(T1[i*4+j])+", ");
            }
            System.out.println();
         }
         System.out.println();
         System.out.println("T2[]:");
         for (i = 0; i < 64; i++) {
            for (j = 0; j < 4; j++) {
               System.out.print("0x"+Util.toString(T2[i*4+j])+", ");
            }
            System.out.println();
         }
         System.out.println();
         System.out.println("T3[]:");
         for (i = 0; i < 64; i++) {
            for (j = 0; j < 4; j++) {
               System.out.print("0x"+Util.toString(T3[i*4+j])+", ");
            }
            System.out.println();
         }
         System.out.println();
         System.out.println("T4[]:");
         for (i = 0; i < 64; i++) {
            for (j = 0; j < 4; j++) {
               System.out.print("0x"+Util.toString(T4[i*4+j])+", ");
            }
            System.out.println();
         }
         System.out.println();
         System.out.println("T5[]:");
         for (i = 0; i < 64; i++) {
            for (j = 0; j < 4; j++) {
               System.out.print("0x"+Util.toString(T5[i*4+j])+", ");
            }
            System.out.println();
         }
         System.out.println();
         System.out.println("T6[]:");
         for (i = 0; i < 64; i++) {
            for (j = 0; j < 4; j++) {
               System.out.print("0x"+Util.toString(T6[i*4+j])+", ");
            }
            System.out.println();
         }
         System.out.println();
         System.out.println("T7[]:");
         for (i = 0; i < 64; i++) {
            for (j = 0; j < 4; j++) {
               System.out.print("0x"+Util.toString(T7[i*4+j])+", ");
            }
            System.out.println();
         }
         System.out.println();
         System.out.println("T8[]:");
         for (i = 0; i < 64; i++) {
            for (j = 0; j < 4; j++) {
               System.out.print("0x"+Util.toString(T8[i*4+j])+", ");
            }
            System.out.println();
         }

         System.out.println();
         System.out.println("U1[]:");
         for (i = 0; i < 64; i++) {
            for (j = 0; j < 4; j++) {
               System.out.print("0x"+Util.toString(U1[i*4+j])+", ");
            }
            System.out.println();
         }
         System.out.println();
         System.out.println("U2[]:");
         for (i = 0; i < 64; i++) {
            for (j = 0; j < 4; j++) {
               System.out.print("0x"+Util.toString(U2[i*4+j])+", ");
            }
            System.out.println();
         }
         System.out.println();
         System.out.println("U3[]:");
         for (i = 0; i < 64; i++) {
            for (j = 0; j < 4; j++) {
               System.out.print("0x"+Util.toString(U3[i*4+j])+", ");
            }
            System.out.println();
         }
         System.out.println();
         System.out.println("U4[]:");
         for (i = 0; i < 64; i++) {
            for (j = 0; j < 4; j++) {
               System.out.println("0x"+Util.toString(U4[i*4+j])+", ");
            }
            System.out.println();
         }

         System.out.println();
         System.out.println("rcon[]:");
         for (i = 0; i < 5; i++){
            for (j = 0; j < 6; j++) {
               System.out.print("0x"+Util.toString(rcon[i*6+j])+", ");
            }
            System.out.println();
         }

         System.out.println();
         System.out.println("Total initialization time: "+time+" ms.");
         System.out.println();
      }
   }

   // Constructor(s)
   // -------------------------------------------------------------------------

   /** Trivial 0-arguments constructor. */
00344    public Rijndael() {
      super(Registry.RIJNDAEL_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE);
   }

   // Class methods
   // -------------------------------------------------------------------------

   /**
    * <p>Returns the number of rounds for a given Rijndael's key and block
    * sizes.</p>
    *
    * @param ks the size of the user key material in bytes.
    * @param bs the desired block size in bytes.
    * @return the number of rounds for a given Rijndael's key and block sizes.
    */
00359    public static int getRounds(int ks, int bs) {
      switch (ks) {
      case 16:
         return bs == 16 ? 10 : (bs == 24 ? 12 : 14);
      case 24:
         return bs != 32 ? 12 : 14;
      default: // 32 bytes = 256 bits
         return 14;
      }
   }

   private static void
   rijndaelEncrypt(byte[] in, int inOffset, byte[] out, int outOffset,
                   Object sessionKey, int bs) {
      Object[] sKey = (Object[]) sessionKey; // extract encryption round keys
      int[][] Ke = (int[][]) sKey[0];

      int BC = bs / 4;
      int ROUNDS = Ke.length - 1;
      int SC = BC == 4 ? 0 : (BC == 6 ? 1 : 2);
      int s1 = shifts[SC][1][0];
      int s2 = shifts[SC][2][0];
      int s3 = shifts[SC][3][0];
      int[] a = new int[BC];
      int[] t = new int[BC]; // temporary work array
      int i, tt;

      for (i = 0; i < BC; i++) { // plaintext to ints + key
         t[i] = ( in[inOffset++]         << 24 |
                 (in[inOffset++] & 0xFF) << 16 |
                 (in[inOffset++] & 0xFF) <<  8 |
                 (in[inOffset++] & 0xFF)        ) ^ Ke[0][i];
      }

      for (int r = 1; r < ROUNDS; r++) { // apply round transforms
         for (i = 0; i < BC; i++) {
            a[i] = (T1[(t[ i           ] >>> 24)       ] ^
                    T2[(t[(i + s1) % BC] >>> 16) & 0xFF] ^
                    T3[(t[(i + s2) % BC] >>>  8) & 0xFF] ^
                    T4[ t[(i + s3) % BC]         & 0xFF]  ) ^ Ke[r][i];
         }

         System.arraycopy(a, 0, t, 0, BC);

         if (DEBUG && debuglevel > 6) {
            System.out.println("CT"+r+"="+Util.toString(t));
         }
      }

      for (i = 0; i < BC; i++) { // last round is special
         tt = Ke[ROUNDS][i];
         out[outOffset++] = (byte)(S[(t[ i           ] >>> 24)       ] ^ (tt >>> 24));
         out[outOffset++] = (byte)(S[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ (tt >>> 16));
         out[outOffset++] = (byte)(S[(t[(i + s2) % BC] >>>  8) & 0xFF] ^ (tt >>>  8));
         out[outOffset++] = (byte)(S[ t[(i + s3) % BC]         & 0xFF] ^  tt        );
      }

      if (DEBUG && debuglevel > 6) {
         System.out.println("CT="+Util.toString(out, outOffset-bs+1, bs));
         System.out.println();
      }
   }

   private static void
   rijndaelDecrypt(byte[] in, int inOffset, byte[] out, int outOffset,
                   Object sessionKey, int bs) {
      Object[] sKey = (Object[]) sessionKey; // extract decryption round keys
      int[][] Kd = (int[][]) sKey[1];

      int BC = bs / 4;
      int ROUNDS = Kd.length - 1;
      int SC = BC == 4 ? 0 : (BC == 6 ? 1 : 2);
      int s1 = shifts[SC][1][1];
      int s2 = shifts[SC][2][1];
      int s3 = shifts[SC][3][1];
      int[] a = new int[BC];
      int[] t = new int[BC]; // temporary work array
      int i, tt;

      for (i = 0; i < BC; i++) { // ciphertext to ints + key
         t[i] = ( in[inOffset++]         << 24 |
                 (in[inOffset++] & 0xFF) << 16 |
                 (in[inOffset++] & 0xFF) <<  8 |
                 (in[inOffset++] & 0xFF)        ) ^ Kd[0][i];
      }

      for (int r = 1; r < ROUNDS; r++) { // apply round transforms
         for (i = 0; i < BC; i++) {
            a[i] = (T5[(t[ i           ] >>> 24)       ] ^
                    T6[(t[(i + s1) % BC] >>> 16) & 0xFF] ^
                    T7[(t[(i + s2) % BC] >>>  8) & 0xFF] ^
                    T8[ t[(i + s3) % BC]         & 0xFF]  ) ^ Kd[r][i];
         }

         System.arraycopy(a, 0, t, 0, BC);

         if (DEBUG && debuglevel > 6) {
            System.out.println("PT"+r+"="+Util.toString(t));
         }
      }

      for (i = 0; i < BC; i++) { // last round is special
         tt = Kd[ROUNDS][i];
         out[outOffset++] = (byte)(Si[(t[ i           ] >>> 24)       ] ^ (tt >>> 24));
         out[outOffset++] = (byte)(Si[(t[(i + s1) % BC] >>> 16) & 0xFF] ^ (tt >>> 16));
         out[outOffset++] = (byte)(Si[(t[(i + s2) % BC] >>>  8) & 0xFF] ^ (tt >>>  8));
         out[outOffset++] = (byte)(Si[ t[(i + s3) % BC]         & 0xFF] ^  tt        );
      }

      if (DEBUG && debuglevel > 6) {
         System.out.println("PT="+Util.toString(out, outOffset-bs+1, bs));
         System.out.println();
      }
   }

   private static void
   aesEncrypt(byte[] in, int i, byte[] out, int j, Object key) {
      int[][] Ke = (int[][]) ((Object[]) key)[0]; // extract encryption round keys
      int ROUNDS = Ke.length - 1;
      int[] Ker = Ke[0];

      // plaintext to ints + key
      int t0 = ( in[i++]         << 24 |
                (in[i++] & 0xFF) << 16 |
                (in[i++] & 0xFF) <<  8 |
                (in[i++] & 0xFF)        ) ^ Ker[0];
      int t1 = ( in[i++]         << 24 |
                (in[i++] & 0xFF) << 16 |
                (in[i++] & 0xFF) <<  8 |
                (in[i++] & 0xFF)        ) ^ Ker[1];
      int t2 = ( in[i++]         << 24 |
                (in[i++] & 0xFF) << 16 |
                (in[i++] & 0xFF) <<  8 |
                (in[i++] & 0xFF)        ) ^ Ker[2];
      int t3 = ( in[i++]         << 24 |
                (in[i++] & 0xFF) << 16 |
                (in[i++] & 0xFF) <<  8 |
                (in[i++] & 0xFF)        ) ^ Ker[3];

      int a0, a1, a2, a3;
      for (int r = 1; r < ROUNDS; r++) { // apply round transforms
         Ker = Ke[r];
         a0 = (T1[(t0 >>> 24)       ] ^
               T2[(t1 >>> 16) & 0xFF] ^
               T3[(t2 >>>  8) & 0xFF] ^
               T4[ t3         & 0xFF]  ) ^ Ker[0];
         a1 = (T1[(t1 >>> 24)       ] ^
               T2[(t2 >>> 16) & 0xFF] ^
               T3[(t3 >>>  8) & 0xFF] ^
               T4[ t0         & 0xFF]  ) ^ Ker[1];
         a2 = (T1[(t2 >>> 24)       ] ^
               T2[(t3 >>> 16) & 0xFF] ^
               T3[(t0 >>>  8) & 0xFF] ^
               T4[ t1         & 0xFF]  ) ^ Ker[2];
         a3 = (T1[(t3 >>> 24)       ] ^
               T2[(t0 >>> 16) & 0xFF] ^
               T3[(t1 >>>  8) & 0xFF] ^
               T4[ t2         & 0xFF]  ) ^ Ker[3];
         t0 = a0;
         t1 = a1;
         t2 = a2;
         t3 = a3;

         if (DEBUG && debuglevel > 6) {
            System.out.println("CT"+r+"="+Util.toString(t0)+Util.toString(t1)
               +Util.toString(t2)+Util.toString(t3));
         }
      }

      // last round is special
      Ker = Ke[ROUNDS];
      int tt = Ker[0];
      out[j++] = (byte)(S[(t0 >>> 24)       ] ^ (tt >>> 24));
      out[j++] = (byte)(S[(t1 >>> 16) & 0xFF] ^ (tt >>> 16));
      out[j++] = (byte)(S[(t2 >>>  8) & 0xFF] ^ (tt >>>  8));
      out[j++] = (byte)(S[ t3         & 0xFF] ^  tt        );
      tt = Ker[1];
      out[j++] = (byte)(S[(t1 >>> 24)       ] ^ (tt >>> 24));
      out[j++] = (byte)(S[(t2 >>> 16) & 0xFF] ^ (tt >>> 16));
      out[j++] = (byte)(S[(t3 >>>  8) & 0xFF] ^ (tt >>>  8));
      out[j++] = (byte)(S[ t0         & 0xFF] ^  tt        );
      tt = Ker[2];
      out[j++] = (byte)(S[(t2 >>> 24)       ] ^ (tt >>> 24));
      out[j++] = (byte)(S[(t3 >>> 16) & 0xFF] ^ (tt >>> 16));
      out[j++] = (byte)(S[(t0 >>>  8) & 0xFF] ^ (tt >>>  8));
      out[j++] = (byte)(S[ t1         & 0xFF] ^  tt        );
      tt = Ker[3];
      out[j++] = (byte)(S[(t3 >>> 24)       ] ^ (tt >>> 24));
      out[j++] = (byte)(S[(t0 >>> 16) & 0xFF] ^ (tt >>> 16));
      out[j++] = (byte)(S[(t1 >>>  8) & 0xFF] ^ (tt >>>  8));
      out[j++] = (byte)(S[ t2         & 0xFF] ^  tt        );

      if (DEBUG && debuglevel > 6) {
         System.out.println("CT="+Util.toString(out, j-15, 16));
         System.out.println();
      }
   }

   private static void
   aesDecrypt(byte[] in, int i, byte[] out, int j, Object key) {
      int[][] Kd = (int[][]) ((Object[]) key)[1]; // extract decryption round keys
      int ROUNDS = Kd.length - 1;
      int[] Kdr = Kd[0];

      // ciphertext to ints + key
      int t0 = ( in[i++]         << 24 |
                (in[i++] & 0xFF) << 16 |
                (in[i++] & 0xFF) <<  8 |
                (in[i++] & 0xFF)        ) ^ Kdr[0];
      int t1 = ( in[i++]         << 24 |
                (in[i++] & 0xFF) << 16 |
                (in[i++] & 0xFF) <<  8 |
                (in[i++] & 0xFF)        ) ^ Kdr[1];
      int t2 = ( in[i++]         << 24 |
                (in[i++] & 0xFF) << 16 |
                (in[i++] & 0xFF) <<  8 |
                (in[i++] & 0xFF)        ) ^ Kdr[2];
      int t3 = ( in[i++]         << 24 |
                (in[i++] & 0xFF) << 16 |
                (in[i++] & 0xFF) <<  8 |
                (in[i++] & 0xFF)        ) ^ Kdr[3];

      int a0, a1, a2, a3;
      for (int r = 1; r < ROUNDS; r++) { // apply round transforms
         Kdr = Kd[r];
         a0 = (T5[(t0 >>> 24)       ] ^
               T6[(t3 >>> 16) & 0xFF] ^
               T7[(t2 >>>  8) & 0xFF] ^
               T8[ t1         & 0xFF]  ) ^ Kdr[0];
         a1 = (T5[(t1 >>> 24)       ] ^
               T6[(t0 >>> 16) & 0xFF] ^
               T7[(t3 >>>  8) & 0xFF] ^
               T8[ t2         & 0xFF]  ) ^ Kdr[1];
         a2 = (T5[(t2 >>> 24)       ] ^
               T6[(t1 >>> 16) & 0xFF] ^
               T7[(t0 >>>  8) & 0xFF] ^
               T8[ t3         & 0xFF]  ) ^ Kdr[2];
         a3 = (T5[(t3 >>> 24)       ] ^
               T6[(t2 >>> 16) & 0xFF] ^
               T7[(t1 >>>  8) & 0xFF] ^
               T8[ t0         & 0xFF]  ) ^ Kdr[3];
         t0 = a0;
         t1 = a1;
         t2 = a2;
         t3 = a3;

         if (DEBUG && debuglevel > 6) {
            System.out.println("PT"+r+"="+Util.toString(t0)+Util.toString(t1)
               +Util.toString(t2)+Util.toString(t3));
         }
      }

      // last round is special
      Kdr = Kd[ROUNDS];
      int tt = Kdr[0];
      out[j++] = (byte)(Si[(t0 >>> 24)       ] ^ (tt >>> 24));
      out[j++] = (byte)(Si[(t3 >>> 16) & 0xFF] ^ (tt >>> 16));
      out[j++] = (byte)(Si[(t2 >>>  8) & 0xFF] ^ (tt >>>  8));
      out[j++] = (byte)(Si[ t1         & 0xFF] ^  tt        );
      tt = Kdr[1];
      out[j++] = (byte)(Si[(t1 >>> 24)       ] ^ (tt >>> 24));
      out[j++] = (byte)(Si[(t0 >>> 16) & 0xFF] ^ (tt >>> 16));
      out[j++] = (byte)(Si[(t3 >>>  8) & 0xFF] ^ (tt >>>  8));
      out[j++] = (byte)(Si[ t2         & 0xFF] ^  tt        );
      tt = Kdr[2];
      out[j++] = (byte)(Si[(t2 >>> 24)       ] ^ (tt >>> 24));
      out[j++] = (byte)(Si[(t1 >>> 16) & 0xFF] ^ (tt >>> 16));
      out[j++] = (byte)(Si[(t0 >>>  8) & 0xFF] ^ (tt >>>  8));
      out[j++] = (byte)(Si[ t3         & 0xFF] ^  tt        );
      tt = Kdr[3];
      out[j++] = (byte)(Si[(t3 >>> 24)       ] ^ (tt >>> 24));
      out[j++] = (byte)(Si[(t2 >>> 16) & 0xFF] ^ (tt >>> 16));
      out[j++] = (byte)(Si[(t1 >>>  8) & 0xFF] ^ (tt >>>  8));
      out[j++] = (byte)(Si[ t0         & 0xFF] ^  tt        );

      if (DEBUG && debuglevel > 6) {
         System.out.println("PT="+Util.toString(out, j-15, 16));
         System.out.println();
      }
   }

   // Instance methods
   // -------------------------------------------------------------------------

   // java.lang.Cloneable interface implementation ----------------------------

00645    public Object clone() {
      Rijndael result = new Rijndael();
      result.currentBlockSize = this.currentBlockSize;

      return result;
   }

   // IBlockCipherSpi interface implementation --------------------------------

00654    public Iterator blockSizes() {
      ArrayList al = new ArrayList();
      al.add(new Integer(128 / 8));
      al.add(new Integer(192 / 8));
      al.add(new Integer(256 / 8));

      return Collections.unmodifiableList(al).iterator();
   }

00663    public Iterator keySizes() {
      ArrayList al = new ArrayList();
      al.add(new Integer(128 / 8));
      al.add(new Integer(192 / 8));
      al.add(new Integer(256 / 8));

      return Collections.unmodifiableList(al).iterator();
   }

   /**
    * Expands a user-supplied key material into a session key for a designated
    * <i>block size</i>.
    *
    * @param k the 128/192/256-bit user-key to use.
    * @param bs the block size in bytes of this Rijndael.
    * @return an Object encapsulating the session key.
    * @exception IllegalArgumentException if the block size is not 16, 24 or 32.
    * @exception InvalidKeyException if the key data is invalid.
    */
00682    public Object makeKey(byte[] k, int bs) throws InvalidKeyException {
      if (k == null) {
         throw new InvalidKeyException("Empty key");
      }
      if (!(k.length == 16 || k.length == 24 || k.length == 32)) {
         throw new InvalidKeyException("Incorrect key length");
      }
      if (!(bs == 16 || bs == 24 || bs == 32)) {
         throw new IllegalArgumentException();
      }

      int ROUNDS = getRounds(k.length, bs);
      int BC = bs / 4;
      int[][] Ke = new int[ROUNDS + 1][BC]; // encryption round keys
      int[][] Kd = new int[ROUNDS + 1][BC]; // decryption round keys
      int ROUND_KEY_COUNT = (ROUNDS + 1) * BC;
      int KC = k.length / 4;
      int[] tk = new int[KC];
      int i, j;

      // copy user material bytes into temporary ints
      for (i = 0, j = 0; i < KC; ) {
         tk[i++] =  k[j++]         << 24 |
                   (k[j++] & 0xFF) << 16 |
                   (k[j++] & 0xFF) <<  8 |
                   (k[j++] & 0xFF);
      }
      // copy values into round key arrays
      int t = 0;
      for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) {
         Ke[t / BC][t % BC] = tk[j];
         Kd[ROUNDS - (t / BC)][t % BC] = tk[j];
      }
      int tt, rconpointer = 0;
      while (t < ROUND_KEY_COUNT) {
         // extrapolate using phi (the round key evolution function)
         tt = tk[KC - 1];
         tk[0] ^= (S[(tt >>> 16) & 0xFF] & 0xFF) << 24 ^
                  (S[(tt >>>  8) & 0xFF] & 0xFF) << 16 ^
                  (S[ tt         & 0xFF] & 0xFF) <<  8 ^
                  (S[(tt >>> 24)       ] & 0xFF)       ^
                   rcon[rconpointer++]           << 24;
         if (KC != 8) {
            for (i = 1, j = 0; i < KC; ) {
               tk[i++] ^= tk[j++];
            }
         } else {
            for (i = 1, j = 0; i < KC / 2; ) {
               tk[i++] ^= tk[j++];
            }
            tt = tk[KC / 2 - 1];
            tk[KC / 2] ^= (S[ tt         & 0xFF] & 0xFF)       ^
                          (S[(tt >>>  8) & 0xFF] & 0xFF) <<  8 ^
                          (S[(tt >>> 16) & 0xFF] & 0xFF) << 16 ^
                           S[(tt >>> 24) & 0xFF]         << 24;
            for (j = KC / 2, i = j + 1; i < KC; ) {
               tk[i++] ^= tk[j++];
            }
         }
         // copy values into round key arrays
         for (j = 0; (j < KC) && (t < ROUND_KEY_COUNT); j++, t++) {
            Ke[t / BC][t % BC] = tk[j];
            Kd[ROUNDS - (t / BC)][t % BC] = tk[j];
         }
      }
      for (int r = 1; r < ROUNDS; r++) { // inverse MixColumn where needed
         for (j = 0; j < BC; j++) {
            tt = Kd[r][j];
            Kd[r][j] = U1[(tt >>> 24)       ] ^
                       U2[(tt >>> 16) & 0xFF] ^
                       U3[(tt >>>  8) & 0xFF] ^
                       U4[ tt         & 0xFF];
         }
      }

      return new Object[] {Ke, Kd};
   }

00760    public void encrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) {
      if (!(bs == 16 || bs == 24 || bs == 32)) {
         throw new IllegalArgumentException();
      }

      if (bs == DEFAULT_BLOCK_SIZE) {
         aesEncrypt(in, i, out, j, k);
      } else {
         rijndaelEncrypt(in, i, out, j, k, bs);
      }
   }

00772    public void decrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) {
      if (!(bs == 16 || bs == 24 || bs == 32)) {
         throw new IllegalArgumentException();
      }

      if (bs == DEFAULT_BLOCK_SIZE) {
         aesDecrypt(in, i, out, j, k);
      } else {
         rijndaelDecrypt(in, i, out, j, k, bs);
      }
   }

00784    public boolean selfTest() {
      if (valid == null) {
         boolean result = super.selfTest(); // do symmetry tests
         if (result) {
            result = testKat(KAT_KEY, KAT_CT);
         }
         valid = new Boolean(result);
      }
      return valid.booleanValue();
   }
}

Generated by  Doxygen 1.6.0   Back to index