Logo Search packages:      
Sourcecode: libgnucrypto-java version File versions  Download package

Square.java

package gnu.crypto.cipher;

// ----------------------------------------------------------------------------
// $Id: Square.java,v 1.9 2003/04/28 10:33:36 raif Exp $
//
// Copyright (C) 2001, 2002, 2003, Free Software Foundation, Inc.
//
// This file is part of GNU Crypto.
//
// GNU Crypto is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// GNU Crypto is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; see the file COPYING.  If not, write to the
//
//    Free Software Foundation Inc.,
//    59 Temple Place - Suite 330,
//    Boston, MA 02111-1307
//    USA
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library.  Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
//
// As a special exception, the copyright holders of this library give
// you permission to link this library with independent modules to
// produce an executable, regardless of the license terms of these
// independent modules, and to copy and distribute the resulting
// executable under terms of your choice, provided that you also meet,
// for each linked independent module, the terms and conditions of the
// license of that module.  An independent module is a module which is
// not derived from or based on this library.  If you modify this
// library, you may extend this exception to your version of the
// library, but you are not obligated to do so.  If you do not wish to
// do so, delete this exception statement from your version.
// ----------------------------------------------------------------------------

import gnu.crypto.Registry;
import gnu.crypto.util.Util;

import java.security.InvalidKeyException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;

/**
 * <p>Square is a 128-bit key, 128-bit block cipher algorithm developed by Joan
 * Daemen, Lars Knudsen and Vincent Rijmen.</p>
 *
 * <p>References:</p>
 *
 * <ol>
 *    <li><a href="http://www.esat.kuleuven.ac.be/~rijmen/square/">The block
 *    cipher Square</a>.<br>
 *    <a href="mailto:daemen.j@protonworld.com">Joan Daemen</a>,
 *    <a href="mailto:lars.knudsen@esat.kuleuven.ac.be">Lars Knudsen</a> and
 *    <a href="mailto:vincent.rijmen@esat.kuleuven.ac.be">Vincent Rijmen</a>.</li>
 * </ol>
 *
 * @version $Revision: 1.9 $
 */
public final class Square extends BaseCipher {

   // Constants and variables
   // -------------------------------------------------------------------------

   private static final int DEFAULT_BLOCK_SIZE = 16; // in bytes
   private static final int DEFAULT_KEY_SIZE = 16; // in bytes

   private static final int ROUNDS = 8;
   private static final int ROOT = 0x1F5; // for generating GF(2**8)
   private static final int[] OFFSET = new int[ROUNDS];

   private static final String Sdata =
      "\uB1CE\uC395\u5AAD\uE702\u4D44\uFB91\u0C87\uA150"+
      "\uCB67\u54DD\u468F\uE14E\uF0FD\uFCEB\uF9C4\u1A6E"+
      "\u5EF5\uCC8D\u1C56\u43FE\u0761\uF875\u59FF\u0322"+
      "\u8AD1\u13EE\u8800\u0E34\u1580\u94E3\uEDB5\u5323"+
      "\u4B47\u17A7\u9035\uABD8\uB8DF\u4F57\u9A92\uDB1B"+
      "\u3CC8\u9904\u8EE0\uD77D\u85BB\u402C\u3A45\uF142"+
      "\u6520\u4118\u7225\u9370\u3605\uF20B\uA379\uEC08"+
      "\u2731\u32B6\u7CB0\u0A73\u5B7B\uB781\uD20D\u6A26"+
      "\u9E58\u9C83\u74B3\uAC30\u7A69\u770F\uAE21\uDED0"+
      "\u2E97\u10A4\u98A8\uD468\u2D62\u296D\u1649\u76C7"+
      "\uE8C1\u9637\uE5CA\uF4E9\u6312\uC2A6\u14BC\uD328"+
      "\uAF2F\uE624\u52C6\uA009\uBD8C\uCF5D\u115F\u01C5"+
      "\u9F3D\uA29B\uC93B\uBE51\u191F\u3F5C\uB2EF\u4ACD"+
      "\uBFBA\u6F64\uD9F3\u3EB4\uAADC\uD506\uC07E\uF666"+
      "\u6C84\u7138\uB91D\u7F9D\u488B\u2ADA\uA533\u8239"+
      "\uD678\u86FA\uE42B\uA91E\u8960\u6BEA\u554C\uF7E2";

   /** Substitution boxes for encryption and decryption. */
   private static final byte[] Se = new byte[256];
   private static final byte[] Sd = new byte[256];

   /** Transposition boxes for encryption and decryption. */
   private static final int[] Te = new int[256];
   private static final int[] Td = new int[256];

   /**
    * KAT vector (from ecb_vk):
    * I=87
    * KEY=00000000000000000000020000000000
    * CT=A9DF031B4E25E89F527EFFF89CB0BEBA
    */
   private static final byte[] KAT_KEY =
         Util.toBytesFromString("00000000000000000000020000000000");
   private static final byte[] KAT_CT =
         Util.toBytesFromString("A9DF031B4E25E89F527EFFF89CB0BEBA");

   /** caches the result of the correctness test, once executed. */
   private static Boolean valid;

   // Static code - to intialise lookup tables
   // -------------------------------------------------------------------------

   static {
      int i, j;
/*
      // Generate exp and log tables used in multiplication over GF(2 ** m)
      byte[] exp = new byte[256];
      byte[] log = new byte[256];

      exp[0] = 1;
      for (i = 1; i < 256; i++) {
         j = exp[i - 1] << 1;
         if ((j & 0x100) != 0) {
            j ^= ROOT; // reduce j (mod ROOT)
         }

         exp[i] = (byte) j;
         log[j & 0xFF] = (byte) i;
      }

      // Compute the substitution box Se[] and its inverse Sd[] based on
      // F(x) = x**{-1} plus affine transform of the output.
      Se[0] = 0;
      Se[1] = 1;
      for (i = 2; i < 256; i++) {
         Se[i] = exp[(255 - log[i]) & 0xFF];
      }

      // Let Se[i] be represented as an 8-row vector V over GF(2); the affine
      // transformation is A * V + T, where the rows of the 8 x 8 matrix A are
      // contained in trans[0]...trans[7] and the 8-row vector T is contained
      // in 0xB1.
      int[] trans = new int[] {0x01, 0x03, 0x05, 0x0F, 0x1F, 0x3D, 0x7B, 0xD6};
      int u, v;
      for (i = 0; i < 256; i++) {
         v = 0xB1;                        // affine part of the transform
         for (j = 0; j < 8; j++) {
            u = Se[i] & trans[j] & 0xFF; // column-wise mult. over GF(2)
            u ^= u >>> 4;                // sum of all bits of u over GF(2)
            u ^= u >>> 2;
            u ^= u >>> 1;
            u &= 1;
            v ^= u << j;                 // row alignment of the result
         }
         Se[i] = (byte) v;
         Sd[v] = (byte) i;                // inverse substitution box
      }

      System.out.println("Se="+Util.toUnicodeString(Se));
      System.out.println("Sd="+Util.toUnicodeString(Sd));
*/
/**/
      // re-construct Se box values
      int limit = Sdata.length();
      char c1;
      for (i = 0, j = 0; i < limit; i++) {
         c1 = Sdata.charAt(i);
         Se[j++] = (byte)(c1 >>> 8);
         Se[j++] = (byte) c1;
      }

      // compute Sd box values
      for (i = 0; i < 256; i++) {
         Sd[Se[i] & 0xFF] = (byte) i;
      }

      // generate OFFSET values
      OFFSET[0] = 1;
      for (i = 1; i < ROUNDS; i++) {
         OFFSET[i] = mul(OFFSET[i - 1], 2);
         OFFSET[i - 1] <<= 24;
      }

      OFFSET[ROUNDS - 1] <<= 24;

      // generate Te and Td boxes if we're not reading their values
      // Notes:
      // (1) The function mul() computes the product of two elements of GF(2**8)
      // with ROOT as reduction polynomial.
      // (2) the values used in computing the Te and Td are the GF(2**8)
      // coefficients of the diffusion polynomial c(x) and its inverse
      // (modulo x**4 + 1) d(x), defined in sections 2.1 and 4 of the Square
      // paper.
      for (i = 0; i < 256; i++) {
         j = Se[i] & 0xFF;
         Te[i] = (Se[i & 3] == 0)
            ? 0
            : mul(j, 2) << 24 | j << 16 | j << 8 | mul(j, 3);

         j = Sd[i] & 0xFF;
         Td[i] = (Sd[i & 3] == 0)
            ? 0
            : mul(j, 14) << 24 | mul(j, 9) << 16 | mul(j, 13) << 8 | mul(j, 11);
      }
/**/
   }

   // Constructor(s)
   // -------------------------------------------------------------------------

   /** Trivial 0-arguments constructor. */
00224    public Square() {
      super(Registry.SQUARE_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE);
   }

   // Class methods
   // -------------------------------------------------------------------------

   private static void
   square(byte[] in, int i, byte[] out, int j, int[][] K, int[] T, byte[] S) {
      int a = ((in[i++]       ) << 24 |
               (in[i++] & 0xFF) << 16 |
               (in[i++] & 0xFF) <<  8 |
               (in[i++] & 0xFF)       ) ^ K[0][0];
      int b = ((in[i++]       ) << 24 |
               (in[i++] & 0xFF) << 16 |
               (in[i++] & 0xFF) <<  8 |
               (in[i++] & 0xFF)       ) ^ K[0][1];
      int c = ((in[i++]       ) << 24 |
               (in[i++] & 0xFF) << 16 |
               (in[i++] & 0xFF) <<  8 |
               (in[i++] & 0xFF)       ) ^ K[0][2];
      int d = ((in[i++]       ) << 24 |
               (in[i++] & 0xFF) << 16 |
               (in[i++] & 0xFF) <<  8 |
               (in[i  ] & 0xFF)       ) ^ K[0][3];

      int r, aa, bb, cc, dd;
      for (r = 1; r < ROUNDS; r++) { // R - 1 full rounds
         aa =      T[(a >>> 24)       ]      ^
            rot32R(T[(b >>> 24)       ],  8) ^
            rot32R(T[(c >>> 24)       ], 16) ^
            rot32R(T[(d >>> 24)       ], 24) ^ K[r][0];
         bb =      T[(a >>> 16) & 0xFF]      ^
            rot32R(T[(b >>> 16) & 0xFF],  8) ^
            rot32R(T[(c >>> 16) & 0xFF], 16) ^
            rot32R(T[(d >>> 16) & 0xFF], 24) ^ K[r][1];
         cc =      T[(a >>>  8) & 0xFF]      ^
            rot32R(T[(b >>>  8) & 0xFF],  8) ^
            rot32R(T[(c >>>  8) & 0xFF], 16) ^
            rot32R(T[(d >>>  8) & 0xFF], 24) ^ K[r][2];
         dd =      T[ a         & 0xFF]      ^
            rot32R(T[ b         & 0xFF],  8) ^
            rot32R(T[ c         & 0xFF], 16) ^
            rot32R(T[ d         & 0xFF], 24) ^ K[r][3];

         a = aa;
         b = bb;
         c = cc;
         d = dd;
      }

      // last round (diffusion becomes only transposition)
      aa = ((S[(a >>> 24)       ]       ) << 24 |
            (S[(b >>> 24)       ] & 0xFF) << 16 |
            (S[(c >>> 24)       ] & 0xFF) <<  8 |
            (S[(d >>> 24)       ] & 0xFF)       ) ^ K[r][0];
      bb = ((S[(a >>> 16) & 0xFF]       ) << 24 |
            (S[(b >>> 16) & 0xFF] & 0xFF) << 16 |
            (S[(c >>> 16) & 0xFF] & 0xFF) <<  8 |
            (S[(d >>> 16) & 0xFF] & 0xFF)       ) ^ K[r][1];
      cc = ((S[(a >>>  8) & 0xFF]       ) << 24 |
            (S[(b >>>  8) & 0xFF] & 0xFF) << 16 |
            (S[(c >>>  8) & 0xFF] & 0xFF) <<  8 |
            (S[(d >>>  8) & 0xFF] & 0xFF)       ) ^ K[r][2];
      dd = ((S[ a         & 0xFF]       ) << 24 |
            (S[ b         & 0xFF] & 0xFF) << 16 |
            (S[ c         & 0xFF] & 0xFF) <<  8 |
            (S[ d         & 0xFF] & 0xFF)       ) ^ K[r][3];

      out[j++] = (byte)(aa >>> 24);
      out[j++] = (byte)(aa >>> 16);
      out[j++] = (byte)(aa >>>  8);
      out[j++] = (byte) aa;
      out[j++] = (byte)(bb >>> 24);
      out[j++] = (byte)(bb >>> 16);
      out[j++] = (byte)(bb >>>  8);
      out[j++] = (byte) bb;
      out[j++] = (byte)(cc >>> 24);
      out[j++] = (byte)(cc >>> 16);
      out[j++] = (byte)(cc >>>  8);
      out[j++] = (byte) cc;
      out[j++] = (byte)(dd >>> 24);
      out[j++] = (byte)(dd >>> 16);
      out[j++] = (byte)(dd >>>  8);
      out[j  ] = (byte) dd;
   }

   /**
    * <p>Applies the Theta function to an input <i>in</i> in order to produce in
    * <i>out</i> an internal session sub-key.</p>
    *
    * <p>Both <i>in</i> and <i>out</i> are arrays of four ints.</p>
    *
    * <p>Pseudo-code is:</p>
    *
    * <pre>
    *    for (i = 0; i < 4; i++) {
    *       out[i] = 0;
    *       for (j = 0, n = 24; j < 4; j++, n -= 8) {
    *          k = mul(in[i] >>> 24, G[0][j]) ^
    *              mul(in[i] >>> 16, G[1][j]) ^
    *              mul(in[i] >>>  8, G[2][j]) ^
    *              mul(in[i]       , G[3][j]);
    *          out[i] ^= k << n;
    *       }
    *    }
    * </pre>
    */
00332    private static void transform(int[] in, int[] out) {
      int l3, l2, l1, l0, m;
      for (int i = 0; i < 4; i++) {
         l3 = in[i];
         l2 = l3 >>>  8;
         l1 = l3 >>> 16;
         l0 = l3 >>> 24;
         m  = ((mul(l0, 2) ^ mul(l1, 3) ^ l2         ^ l3        ) & 0xFF) << 24;
         m ^= ((l0         ^ mul(l1, 2) ^ mul(l2, 3) ^ l3        ) & 0xFF) << 16;
         m ^= ((l0         ^ l1         ^ mul(l2, 2) ^ mul(l3, 3)) & 0xFF) <<  8;
         m ^= ((mul(l0, 3) ^ l1         ^ l2         ^ mul(l3, 2)) & 0xFF);
         out[i] = m;
      }
   }

   /**
    * <p>Left rotate a 32-bit chunk.</p>
    *
    * @param x the 32-bit data to rotate
    * @param s number of places to left-rotate by
    * @return the newly permutated value.
    */
00354    private static int rot32L(int x, int s) {
      return x << s | x >>> (32 - s);
   }

   /**
    * <p>Right rotate a 32-bit chunk.</p>
    *
    * @param x the 32-bit data to rotate
    * @param s number of places to right-rotate by
    * @return the newly permutated value.
    */
00365    private static int rot32R(int x, int s) {
      return x >>> s | x << (32 - s);
   }

   /**
    * <p>Returns the product of two binary numbers a and b, using the generator
    * ROOT as the modulus: p = (a * b) mod ROOT. ROOT Generates a suitable
    * Galois Field in GF(2**8).</p>
    *
    * <p>For best performance call it with abs(b) &lt; abs(a).</p>
    *
    * @param a operand for multiply.
    * @param b operand for multiply.
    * @return the result of (a * b) % ROOT.
    */
00380    private static final int mul(int a, int b) {
      if (a == 0) {
         return 0;
      }

      a &= 0xFF;
      b &= 0xFF;
      int result = 0;
      while (b != 0) {
         if ((b & 0x01) != 0) {
            result ^= a;
         }

         b >>>= 1;
         a <<= 1;
         if (a > 0xFF) {
            a ^= ROOT;
         }
      }
      return result & 0xFF;
   }

   // Instance methods
   // -------------------------------------------------------------------------

   // java.lang.Cloneable interface implementation ----------------------------

00407    public Object clone() {
      Square result = new Square();
      result.currentBlockSize = this.currentBlockSize;

      return result;
   }

   // IBlockCipherSpi interface implementation --------------------------------

00416    public Iterator blockSizes() {
      ArrayList al = new ArrayList();
      al.add(new Integer(DEFAULT_BLOCK_SIZE));

      return Collections.unmodifiableList(al).iterator();
   }

00423    public Iterator keySizes() {
      ArrayList al = new ArrayList();
      al.add(new Integer(DEFAULT_KEY_SIZE));

      return Collections.unmodifiableList(al).iterator();
   }

00430    public Object makeKey(byte[] uk, int bs) throws InvalidKeyException {
      if (bs != DEFAULT_BLOCK_SIZE) {
         throw new IllegalArgumentException();
      }
      if (uk == null) {
         throw new InvalidKeyException("Empty key");
      }
      if (uk.length != DEFAULT_KEY_SIZE) {
         throw new InvalidKeyException("Key is not 128-bit.");
      }

      int[][] Ke = new int[ROUNDS + 1][4];
      int[][] Kd = new int[ROUNDS + 1][4];
      int[][] tK = new int[ROUNDS + 1][4];
      int i = 0;

      Ke[0][0] = (uk[i++] & 0xFF) << 24 |
                 (uk[i++] & 0xFF) << 16 |
                 (uk[i++] & 0xFF) <<  8 |
                 (uk[i++] & 0xFF);
      tK[0][0] = Ke[0][0];
      Ke[0][1] = (uk[i++] & 0xFF) << 24 |
                 (uk[i++] & 0xFF) << 16 |
                 (uk[i++] & 0xFF) <<  8 |
                 (uk[i++] & 0xFF);
      tK[0][1] = Ke[0][1];
      Ke[0][2] = (uk[i++] & 0xFF) << 24 |
                 (uk[i++] & 0xFF) << 16 |
                 (uk[i++] & 0xFF) <<  8 |
                 (uk[i++] & 0xFF);
      tK[0][2] = Ke[0][2];
      Ke[0][3] = (uk[i++] & 0xFF) << 24 |
                 (uk[i++] & 0xFF) << 16 |
                 (uk[i++] & 0xFF) <<  8 |
                 (uk[i  ] & 0xFF);
      tK[0][3] = Ke[0][3];

      int j;
      for (i = 1, j = 0; i < ROUNDS + 1; i++, j++) {
         tK[i][0] = tK[j][0] ^ rot32L(tK[j][3], 8) ^ OFFSET[j];
         tK[i][1] = tK[j][1] ^ tK[i][0];
         tK[i][2] = tK[j][2] ^ tK[i][1];
         tK[i][3] = tK[j][3] ^ tK[i][2];

         System.arraycopy(tK[i], 0, Ke[i], 0, 4);

         transform(Ke[j], Ke[j]);
      }

      for (i = 0; i < ROUNDS; i++) {
         System.arraycopy(tK[ROUNDS - i], 0, Kd[i], 0, 4);
      }

      transform(tK[0], Kd[ROUNDS]);

      return new Object[] {Ke, Kd};
   }

00488    public void encrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) {
      if (bs != DEFAULT_BLOCK_SIZE) {
         throw new IllegalArgumentException();
      }

      int[][] K = (int[][])((Object[]) k)[0];
      square(in, i, out, j, K, Te, Se);
   }

00497    public void decrypt(byte[] in, int i, byte[] out, int j, Object k, int bs) {
      if (bs != DEFAULT_BLOCK_SIZE) {
         throw new IllegalArgumentException();
      }

      int[][] K = (int[][])((Object[]) k)[1];
      square(in, i, out, j, K, Td, Sd);
   }

00506    public boolean selfTest() {
      if (valid == null) {
         boolean result = super.selfTest(); // do symmetry tests
         if (result) {
            result = testKat(KAT_KEY, KAT_CT);
         }
         valid = new Boolean(result);
      }
      return valid.booleanValue();
   }
}

Generated by  Doxygen 1.6.0   Back to index